
AFIT/GCS/ENG/99M-03

PROTEIN STRUCTURE PREDICTION
USING

PARALLEL
LINKAGE INVESTIGATING GENETIC ALGORITHMS

THESIS

Karl Raphael Deerman, Captain, USAF

AFIT/GCS/ENG/99M-03

Approved for public release; distribution unlimited.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

MM QUALITY INSPECTED 3
19990409 045

AFIT/GCS/ENG/99M-03

PROTEIN STRUCTURE PREDICTION
USING

PARALLEL LINKAGE INVESTIGATING GENETIC ALGORITHMS

THESIS

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirement for the Degree of
Master of Science in Computer Science

Karl R. Deerman, B.S.

Captain, USAF

March 1999

Approved for public release; distribution unlimited.
(A thesis formerly known as FRED.)

AFIT/GCS/ENG/99M-03

PROTEIN STRUCTURE PREDICTION
USING

PARALLEL LINKAGE INVESTIGATING GENETIC ALGORITHMS

Karl R. Deerman, B.S.
Captain, USAF

Approved:

/\fC'- ti/ /-*jl V7y^<^
date

date

■r/^-tflw^-AA- c "Zl'lsC'L,!,!*^

Thomas C. Hartrum, Committee Member
/1 ;?w /??<?

date

Acknowledgments

I could not have accomplished the daunting task of completing this mammoth

effort without the continual support of several individuals. My sincerest thanks go out to

my thesis advisor, Dr. Gary Lamont, who never balked at my continual pleading for

more time. His educational perspectives motivated me to learn more than I thought

possible in just 18 months! I'm also indebted to my sponsor, Dr. Ruth Pachter. She

never seemed to become frustrated with my inability to fully comprehend molecular

biochemistry. I would also like to acknowledge other members of my committee: Dr.

Tom Hartrum for teaching me to appreciate the beauty of a well-documented program,

Captain Sam Gardner for correcting my math, and Captain Larry Merkle who made me

review more chemistry than a computer scientist should have to.

Several students at AFIT have been more than helpful during this investigation.

Captain Dave Van Veldhuizen endured my endless questions about genetic algorithms.

To his realignment of my genetic algorithm perspectives I will always be indebted. I

would also like to thank Captain Lonnie Hammack, Captain Chris Bohn, and Captain

Fernando Silva for keeping me non-postal during the long hours of slaving in the lab,

and their ability to listen to my endless whining about software that would not perform.

Finally, none of this work would have been possible without the love and support

from my wife, Tanya. This thesis is as much your document as it is mine. I know and

understand that your sacrifices have been far greater than mine! Thank you, for your

patience, devotion, and understanding. I would like to dedicate this document to my

unborn child. May one day he be able to read it, comprehend it, and point out the errors

his old man has made.

RICERCAR

Karl Raphael Deerman

23 March 1999

Table of Contents
Acknowledgments i
Table of Contents ii
List of Equations v
List of Figures vi
List of Tables viii
Abstract ix
1.0 Introduction 1

1.1 Protein Structure Prediction (PSP) / Protein Folding Prediction (PFP) 1
1.1.1 PSP Problem Class 2
1.1.2 PSP Structure 3

1.2 Genetic Algorithms 6
1.3 Parallel & Distributed Computing. 7
1.4 Visualization 8
1.5 Research Objectives & Rationale 9
1.6 Methodology 11
1.7 Assumptions on Research Context 11
1.8 Overview 11

2.0 Literature Review 13
2.1 Introduction 13
2.2 PSP Landscape 13
2.3 PSP Energy Models 16
2.4 Bounding the Search Space 20
2.5 Visualizing the Search Space 28
2.6 Summary 31

3.0 Linkage Investigating Genetic Algorithms (LIGAs) 33
3.1 Introduction 33
3.2 Problems with the SGA 33
3.3 Survey of Current LIGAs 34
3.3.1 Messy Genetic Algorithm (mGA) 35
3.3.1.1 Chromosome Representation 35
3.3.1.2 mGA Algorithmic Phases 36
3.4 Selfish Gene Genetic Algorithm (SG GA) 38
3.4.1 SG GA Chromosome Representation 40
3.4.2 SG GA Algorithmic Phases 40
3.5 Gene Expression Messy Genetic Algorithm (GEMGA) 42
3.5.1 Chromosome Representation 43
3.5.2 Algorithmic Phases 44
3.6 Linkage Learning Genetic Algorithm (LLGA) 46
3.6.1 LLGA Chromosome Representation 48
3.5.2 LLGA Algorithmic Phases 49
3.7 Comparison 52
3.7.1 Initial Population Explosion Problem 52
3.7.2 Algorithmic Complexity 54
3.7.3 Linkage Order Ability 56
3.7 Summary 58

4.0 Genetic Algorithm (GA) Design and Implementation 60
4.1 Introduction 60
4.2 CHARMm Implementation Design 61

4.2.1 Integrating CHARMm 62

ii

4.2.2 Design Implementation 62
4.3 LLGA/PSP Design and Implementation Details 66

4.3.1 Challenge 1: Building Block Assumption 67
4.3.2 Challenge 2: Recording the Optimal Solution Uncovered 68
4.3.3 Challenge 3: Integration of CHARMm 69
4.3.4 Challenge 4: Parallel Implementation and Execution Timing 69
4.3.4 Challenge 5: Random Number Generator Correctness 70

4.4 AFIT CHARMm Inclusion of Ramachandran Constraints 74
4.5 Summary 76

5.0 Design of Experiments 77
5.1 Test Molecules 78
5.2 General Data Requirements 81

5.2.1 General Data Requirements 81
5.2.2 Random Number Seeds 83
5.2.3 Root Mean Squared Deviation (RMSD) 83

5.2.4 Test Platforms 84
5.3 Experiment Specifics 84
5.3.1 Experiment 1: Parallel vs. Sequential LLGA 85
5.3.2 Experiment 2: Constrained vs. Non-constrained Sequential LLGA 86
5.3.3 Experiment 3: Constrained Parallel LLGA vs. Non-constrained Parallel LLGA87
5.3.4 Experiment 4: Constrained-pLLGA vs. Constrained Para-REGAL
Implementation 88
5.3.5 Experiment 5: Constrained-LLGA, Non-constrained LLGA, pLLGA, constrained
pLLGAvs. fmGA 88
5.4 Summary 89

6.0 Results and Analysis 91
6.1 Experiment 1: Parallel vs. Sequential LLGA 91
6.3 Experiment 2: Constrained vs. Non-constrained Sequential LLGA 96
6.4 Experiments: Constrained Parallel LLGA vs. Non-constrained Parallel LLGA..99
6.5 Experiment 4: Constrained-pLLGA vs. Constrained Para-REGAL Implementation
 102
6.6 Experiment 5: Constrained-LLGA, Non-constrained LLGA, pLLGA, constrained
pLLGA vs. pfmGA 103
6.6 LLGA Observations 104
6.7 Energy Landscape Visualization 113
6.8 Summary 117

7.0 Conclusion and Recommendations 118
7.1 Conclusions 118
7.2 Contributions 119
7.3 Recommendations 119

Appendix A. Background on the Protein Folding and Protein Structure Prediction
Problems 121

A.1 Introduction to Proteins and Associated Terminology 121
Appendix B. Current Methods for Protein Structure Prediction 125

B.1 Introduction 125
B.2 Practical Methods for Calculating a Protein's Native Structure 125

B.2.1 X-ray Crystallography 126
B.2.2 Nuclear Magnetic Resonance Spectroscopy 128
B.2.3 Computational Models 129
B.2.3.1 Empirical 129

in

B.2.3.1.1 Anatomy of a Molecular Mechanics Force-Field 130
B.2.3.1.1.1 Bond Stretching Energy 131
B.2.3.1.1.2 Angle Bending Energy 132
B.2.3.1.1.3 Non-Bonded Energy 132
B.2.3.1.1.4 Torsion Energy 133
B.2.3.2 Semi-Empirical 134
B.2.3.3 Ab Initio 136

B.3 Summary 139
Appendix C: Parallelization Techniques 140

6.1 Decomposition Techniques 140
C.2 Scheduling Strategies 141
C.3Load Balancing 142
C.4 Introduction to UNITY 143

C.4.1 Explicit Expression of Parallelism 143
C.4.2 Extraction of Proofs 144
C.4.3 Mapping of the Initial Design 144

Appendix D: Decomposition of the PSP Problems 147
D.1 Decomposition of PSP Problem 147
D.2 Scheduling and Load Balancing of the GAs 149
D.3 Scheduling and Load Balancing of CHARMm 153
D.4 Summary 155

Appendix E: Additional LIGA Structure 156
E.1 Messy Genetic Algorithm (mGA) 156
E.1a mGA Chromosome Representation: Positional Precedence 156
E.1b mGA Chromosome Representation: the Competitive Template 156
E.1c mGA Algorithmic Phases: partially enumerative initialization (PEI) 157
E.1d mGA Algorithmic Phases: Cut-and-Splice 159
E.2 Selfish Gene Genetic Algorithm (SG GA) 161
E.2a SG GA Chromosome Representation: Virtual Gene Pool Growth Rate 162
E.2b SG GA Algorithmic Phases: Mutation 163
E.2c SG GA Algorithmic Phases: Allele Frequencies and Epsilon (e) 164
E.3 Gene Expression Messy Genetic Algorithm (GEMGA) 164
E.3a Chromosome Representation: Gene Representation 165
E.3b Algorithmic Phases: Initialization 165
E.3c Algorithmic Phases: RecombinationExpression 166
E.4 Linkage Learning Genetic Algorithm (LLGA) 168
E.4a LLGA Algorithmic Phases: Exchange Operator 168
E.4b LLGA Algorithmic Phases: Preconvergence Avoidance and Introns 170

Appendix F: Software Locations 172
F.1 Source Code 172
F.2 Input and Output Files 172

Appendix G: Flow Diagrams for AFIT's Implementation of the CHARMm Energy
Model 175
Appendix H: Object Classes for the Redesigned LLGA 182
Appendix I: Newman Projection for the Each Dihedral Constraint 185
Appendix J: Statistics Explained 186

J.1 Analysis of Variance Testing (ANOVA) 186
J.2 Kruskal-Wallis H Test 188
J.3 The Central Limit Theorem 189

Appendix K. Material for Test Platforms 190

IV

K.1 AFIT Network Of Workstations (NOW) 190
K.2 IBMSP2 190
K.3 AFIT Heterogeneous Beowulf 191

8.0 Vita 192
9.0 References 193

List of Equations
Equation 1: Simplified Assumption 4
Equation 2: Psi, Phi, and Chi Constraints 6
Equation 3: Mathamatical Representation of NC Problem 8
Equation 4: Size of the Landscape 13
Equation 5: Bond & Angle Energy Equations 17
Equation 6: Torsion Potential 17
Equation 7: Improper Torsion 17
Equation 8: Lennard-Jones Potential 18
Equation 9: Hydrogen Bonding Energy Reduction 18
Equation 10: Water-Water Interaction 18
Equation 11: Complete CHARMm Energy Equation 18
Equation 12: AFIT's CHARMM Implementation 19
Equation 13: 1st Coordinate Transformation 26
Equation 14: 2nd Coordinate Transformation 27
Equation 15: p-norm 29
Equation 16: Selfish Gene Model of Mutation 41
Equation 17: SG Steady State 41
Equation 18: GEMGA Population Requirement 44
Equation 19 : LLGA Building Block Linkage 47
Equation 20: RMSD Calculation 83
Equation 21: Total Overhead 92
Equation 22: Speedup 93
Equation 23: Efficiency 95
Equation 24: Simplified Semi-Empirical Energy Equation 130
Equation 25: Bond Stretching Energy 131
Equation 26: Angle Bending Energy 132
Equation 27: Non-bonded Energy Equation 133
Equation 28: Torsion Energy Equation 134
Equation 29: Schrodinger's Equation 135
Equation 30: Reduction of Schrodinger's Equation 135
Equation 31: Simplified Schrodinger's Equation 135
Equation 32: Schrodinger's Equation for a Molecule 136
Equation 33: Fock Operator 136
Equation 34: Hamiltonian, Coulomb, and Exchange Operators 137
Equation 35: Minimum Energy Equation 137
Equation 36: Definition of Matrix Elements 137
Equation 37: Hartree-Fock Equation 137
Equation 38: Spatial Orbitals 138
Equation 39: Roothaan Equations 138
Equation 40: Overlap and Fock Matrices 138
Equation 41 : PEI Population Equation 158
Equation 42: Cut Probability 160

Equation 43
Equation 44
Equation 45

Introns Required perX Exons 170
Two-Way ANOVA Design 187
Kruskal-Wallis H Test 188

Figur e1:
Figur e2:
Figur e3:
Figur e4:
Figur e5:
Figur e6:
Figur e7:
Figur e8:
Figur e9:
Figur e10
Figur e11
Figur e12
Figur e13
Figur e14
Figur e15
Figur e16
Figur e17
Figur e18
Figur e19
Figur e20
Figur e21
Figur e22
Figur e23
Figur e24
Figur e25
Figur e26
Figur e27
Figur e28
Figur e29
Figur e30
Figur e31
Figur e32
Figur e33
Figur e34
Figur e35
Figur e36
Figur e37
Figur e38
Figur e39
Figur e40
Figur e41
Figur e42
Figur e43
Figur e44

List of Figures
A Three Amino Acid Protein 4
PFP Simplified 5
Metastable State 14
The Glassy Funnel 15
Partial Double-Bond Characteristics 21
The trans Formation 22
The eis Formation 22
Original Ramachandran Plot 24
Stryer's Ramachandran Plot 25
Applying 1st Transform 26
Repositioning the Origin 26
O-Axis Transformation 27
P-Norm Comparison 30
Energy Landscape Visualization 31

mGA Positional Precedence at Work 36
Propagation of a Chromosome Fragment 39
Steps of SEARCH 43
GEMGA Chromosome Representation 44
Harik's Linkage Definition 48
Visualization of a Chromosome 49
Deletion Process Tightening of Building Blocks 50
Crossover Operation Tightening of Building Blocks 51
LIGA Complexity Curves 56
AGCT Genetic Algorithm Toolkit 61
CHARMm Source Code Control Flow 63
Z-matrix Format 63
LLGA Class Hierarchy 67
Uniformly Distributed Random Numbers 72
Autocorrelation for Random Seed 1 73
Orginal Chromosome Decoding 74
Modified Chromosome Decoding 75
Extended Conformation of [Met]-Enkephalin 79
Extended Conformation of Polyalanine 80
pLLGA Speedup 94
pLLGA Efficiency 96
Energy Characteristics of the cLLGA 98
Energy Characteristics of the LLGA 99
Speedup Comparison between pLLGA and cpLLGA 101
Efficiency Comparison between the pLLGA and cpLLGA 102
Comparison Between Linkage Investigating Gas 104
BBs Uncovered and Maintained for the pLLGA and Random Seed 1 105
BBs Uncovered and Maintained for the pLLGA and Random Seed 2 106
BBs Uncovered and Maintained for the pLLGA and Random Seed 3 107

BBs Uncovered and Maintained for the cpLLGA and Random Seed 1 108

VI

Figu
Figu
Figu

Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu
Figu

e 45: BBs Uncovered and Maintained for the cpLLGA and Random Seed 2 109
e 46: BBs Uncovered and Maintained for the cpLLGA and Random Seed 3 110
e 47: BBs Uncovered and Maintained for the cpLLGA, Random Seed 3, and the
New Selection Operator 111
e 48: Energy Characteristics of the New Selection Operator 112
e 49: Energy Characteristics of the New Selection Operator (smaller scale) 113
e 50: Energy Landscape Visualization 115
e51: Condensed Energy Landscape Visualization 116
e 52: X-ray Diffraction Pattern for protein Lac Repressor [27] 127
e 53: Electron Density Map [29] 127
e 54: Sample 1D NMR Spectrum [26] 129
e 55: Overview of the Mechanical Molecular Model Forces 131
e56: Bond Stretching 131
e57: Angle Bending 132
e58: Non-bonded Interaction 133
e59: Torsion Energy 134
e 60: Direct LLGA Task Decomposition Schedule 149
e 61: Direct fmGA Task Decomposition Schedule 149
e 62: Zhu's Scheduling for LLGA 150
e 63: Zhu's Scheduling for fmGA 151
e 64: Kruatrachue-Lewis' Duplicate Scheduling for LLGA 152
e 65: Kruatrachue-Lewis' Duplicate Scheduling for mGA 152
e 66: Two Simple Parallelizations of CHARMM 153
e 67; Zhu's CHARMM Schedule 154
e 68: Krutrachue-Lewis' CHARMM Schedule 155
e 69: mGA's Inter-Chromosomal Dominance Operator 156
e70: Population Growth Rate for the mGA 159
e 71: Cut-and-Splice in a Nutshell 161
e 72: Population Growth Rate for the SG GA 163
e 73: 2D Fitness Landscape 164
e 74: GEMGA Population Growth vs. Increasing Initial Variance 166
e 75: An Overview of the Exchange Operator 169
e 76: Intron Requirement Trend 171
e 77: Sample LLGA Input File 173
e 78: Top Level Structure Chart 175
e 79: CHARMm Top-level Data and Structure Diagram 176
e 80: Non-bonded Energy Module Expansion 177
e 81: New Coordinates Module Expansion 178
e 82: Local Minimization Top-Level Data and Structure Diagram 179
e 83: Module dlinmin Expansion 180
e 84: Module mymnbrak Expansion 180
e 85: Module dbrent Expansion 181
e86: Phi Constraints 185
e 87: Gylcine Phi Constraints 185
e88: Psi Constraints 185
e 89: Omega Constraints 185
e90: Chi Constraints 185

Vll

List of Tables
Table 1: Practical Differences of the Computational Engines 3
Table 2: Comparison Between Commonly used Energy Functions 20
Table 3: Bond Angle Conventions 23
Table 4: Comparison of van der Waals Contact Distances 23
Table 5: Loose Constraints for [Met]-Enkephalin 28
Table 6: Loose Constraints for Polyalanine 28
Table 7: Visualization Legend 30
Table 8: Algorithmic Complexity 55
Table 9: Algorithm Characterisitcs Summerized 58
Table 10: Successful LIGA Aplications 59
Table 11: Correct Energy Values Associated with the Correct Z-Matrix File 64
Table 12: Chromosome Decoding 65
Table 13: Pairwise Correlation 73
Table 14: Dihedral Angles for [Met]-Enkephalin Accepted Energy Minimum 78
Table 15: Dihedral Angles for Polyalanine Accepted Energy Minimum 80
Table 16: General Data Requirements for Each Experiment 82
Table 17: Random Number Seeds Use In Initialization 83
Table 18: Processor Allocation per Architecture 84
Table 19: General LLGA Parameters 85
Table 20: Parameters for Experiment 1 86
Table 21: Parameters for Experiment 2 87
Table 22: Parameters for Experiment 4 88
Table 23: Parameters for Experiment 5 89
Table 24: End of Execution Energy Comparison bewteen LLGA and pLLGA 91
Table 25: pLLGA Average Execution Times - ABC Beowulf 92
Table 26: pLLGA Average Execution Times - Maui SP2 92
Table 27: Statisticals For pLLGA Implementations 95
Table 28: Constrained vs. Non-Constrained 96
Table 29: Final Energy Characteristics for the LLGa and cLLGA 97
Table 30: Total Overhead for cpLLGA and pLLGA 100
Table 31: Limits of the Landscape Visualization 114
Table 32: Dihedral Angles for Molecule One of the Visualization 114
Table 33: Dihedral Angles for the Last Molecule of the Visualization 114
Table 34: Possible Fitness Functions 120
Table 35: Phi & Psi Pairs of Common Secondary Structures 122
Table 36: Enumeration Time of 1.3x1030 Search Space at One Solution per Clock Cycle
 124

Table 37: Principles of UNITY 144
Table 38: Steps to a UNITY Proof 144
Table 39: Mapping to Asynchronous Shared-Memory Architectures 145
Table 40: Mapping to Distributed Systems 146
Table 41: Mapping to Synchronous Architectures 146
Table 42: LLGA Task Decomposition 147
Table 43: mGA Task Decomposition 148
Table 44: CHARMM Decomposition 148
Table 45 : Cut-and-Splice Combination Possibilities 160
Table 46: Example ANOVA Table 187
Table 47: Two-Way ANOVA Decomposition Table 187

Vlll

AFIT/GCS/ENG/99M-03

Abstract

AFIT has had a long-standing interest in solving the protein structure prediction

(PSP) problem. The PSP problem is an intractable problem that if "solved" can lead to

revolutionary new techniques for everything from the development of new medicines to

optical computer switches. The challenge is to find a reliable and consistent method of

predicting the 3-dimensional structure of a protein given its defining sequence of amino

acids. PSP is primarily concerned with predicting the tertiary protein structure without

regards to how the protein came to this folded state. The tertiary structure determines

the protein's functionality.

Genetic algorithms (GAs) are stochastic search routines that are capable of

providing solutions to intractable problems. The use of GAs plays an important part in

the search for near optimal solutions in large search spaces. The PSP solution

landscape is so large and complex that deterministic methods flounder due to the

combinatoric issues involved with enumerating these massive search spaces. This

makes the GA an ideal candidate for finding solutions to the PSP problem.

This is an engineering investigation into the effectiveness and efficiency of the

Linkage Learning GA (LLGA) applied to the PSP problem. The LLGA implementations

takes explicit advantage of "tight linkages" early enough in its algorithmic processing to

overcome the disruptive effects of crossover. The LLGA is integrated with the

previously developed and tested AFIT CHARMm energy model software.

Furthermore, a parallel version, pLLGA, is developed using a data partitioning

scheme to "farm out" the CHARMm evaluations. Portability across AFIT's

heterogeneous ABC Beowulf system, distributed networks, and massively parallel

platforms is accomplished through the use of object-oriented C++ and the Message

Passing Interface (MPI). This model improves the efficiency of the LLGA algorithm.

Ramachandran developed constraints are incorporated into the LLGA to exploit

domain knowledge in order to improve the effectiveness of the search technique. This

approach, constrained-LLGA (cLLGA), has been parallelized using the same

decomposition as the pLLGA. This new implementation is called the constrained-

parallel LLGA (cpLLGA). Efficiency analysis for these two implementations is

discussed.

IX

Finally, the results from these experiments are compared to previous AFIT

implementations. The parallel fast messy GA and the parallel real-valued GA are

compared to the pLLGA and cpLLGA, respectively.

1.0 Introduction

Computer solutions to many complex optimization problems cannot be obtained

in acceptable amounts of time. Even the most powerful of today's super computers, if

given a problem of sufficient complexity, would take centuries to return a solution1. Yet,

if truly complex problems - such as the so-called "Grand Challenges" - are to be solved,

improved algorithmic methods must be accompanied by similar improvements in

computer technology.

Recent research efforts have turned towards creating general search algorithms

designed to "overpower" these difficult problems by finding "acceptable" solutions. The

Air Force Institute of Technology (AFIT) has long been a leader in the pursuit of solving

these Grand Challenges. Two main research efforts spearheaded by AFIT as part of

these efforts are parallel computing and semi-optimal search algorithms. Parallel

computing is a field of computer science/engineering that transforms problems

traditionally solved sequentially by decomposing them into independent subproblems

that can be solved simultaneously on separate processors. The other effort, semi-

optimal stochastic search algorithms are a means to find reasonably "good" or

suboptimal solutions to intractable problems.

One such problem AFIT has had a long interest in solving is the protein structure

prediction (PSP) problem. The PSP problem is an intractable problem contained in the

class of Grand Challenges [47]. The challenge is to find a reliable and consistent

method of predicting the 3-dimensional structure of a protein given its defining sequence

of amino acids. An exhaustive search of a reasonable discretization of the entire

solution space for even the smallest proteins consumes more time then the estimated

age of the universe [15]! This thesis research explores genetic algorithms as a possible

means to solve the PSP problem.

1.1 Protein Structure Prediction (PSP) / Protein Folding Prediction (PFP)

The PSP and Protein Folding Prediction (PFP) problem are two related problems

that have the same overall objective: to accurately predict the conformational structure

of a protein. The PSP approach is primarily concerned with predicting the protein's

tertiary structure without regards to how the protein arrived at this folded state. On the

1 See Appendix A.

other hand, the PFP's primary concern is the transition process the protein undergoes

starting from the primary structure and ending in the tertiary structure (ab initio).

A protein is comprised of amino acids linked together through chemical bonding.

The tertiary structure of a protein corresponds to positioning all its amino groups in such

a manner that the overall molecule has the lowest energy (i.e., conformational energy).

Although the structure of a specific protein, hence the positions of all the atoms, can be

accurately determined using currently available methods (x-ray crystallography and

nuclear magnetic resonance - see APPENDIX B for a detailed description -), each of

these methods requires several years to obtain results for a single protein [18], and the

protein must first be synthesized or isolated. Therefore, a portion of the PSP/PFP

community has turned its attention to predicting the conformational structure through the

use of computer models and simulations.

1.1.1 PSP Problem Class

The PSP problem belongs to the class of problems for which currently there is

no known non-polynomial-time complexity nondeterministic algorithm (i.e., NP-complete)

[48]. Proving the problem is in NP and it can be mapped to some other "known" NP-

complete problem shows its NP-completeness. The PSP problem is in NP because the

size of the search space is defined by the number of independently variable dihedral

angles raised to the power of the number of allowed rotation angles. In other words,

(cardinality IProteinl)n where n = number of positions a dihedral can hold and the

cardinality represents the number of independently variable dihedral angles within the

protein. For example, if we used a three-peptide protein with pi rooted at the axis of a

normal Cartesian plane (0,0), p2 can be positioned at 0° to 360° about the origin, and

P3 can similarly rotate about p2- In this example, P = {pi, P2, P3) and n = 360 yielding

2360 possibilities. This simplification allows for more variability within the rotation then

what is allowed by nature, which is explained in more detail in the following section.

Mapping the PSP problem to another known NP-complete class problem is a

trivial but rather lengthy matter. The requirement is to prove that the PSP problem is

polynomial transformable to another known NP-complete problem. The argument and

proof is in [48]. Because the PSP problem is NP-complete, we will never truly be able to

say, "Eureka, we found the global optimal answer!" through computational power alone.

1.1.2 PSP Structure

The structure of the PSP problem is exclusively defined by the means of

calculating the conformational energy. For instance, usually empirical methods only

take dihedral bond angles into account while holding such energy terms like bond length

and bond angle constant. Furthermore, they usually don't account for interactions

between the protein and the surrounding solvent. On the other end of the calculation

spectrum, ab initio methods use all atomic interactions when calculating the

conformational energy as the protein folds. Table 1 lists the practical differences

between the three general computational methods.

Empirical Methods

• Used in molecules containing thousands of atoms.
■ Can be applied to organics, oligonucleotides, peptides, and saccharides

(metallo-organics & inorganics in some cases).
• Vacuum, implicit, or explicit solvent environments
• Can only be used to study ground state.
• Can be used to explain thermodynamic and kinetic properties.

Semi-Empirical Methods

• Limited to hundreds of atoms
• Can be applied to organics, organo-metallics, and small oligomers

(peptide, nucleotide, saccharides).
• Can be used to study ground, transition, and exited states (certain

Ab Initio Methods

• Limited to tens of atoms and still best performed using a supercomputer.
• Can be applied to organics, organo-metallics. and molecular fragments

(e.g. catalytic components of enzyme).
• Can be used to study ground, transition, and exited states (certain

Table 1: Practical Differences of the Computational Engines

Assuming the use of an empirical computational method, the PSP problem

structure reduces to:

Given a protein (P) comprised of a chain of peptides (p), each having a
dihedral angle associated on one end, given the position of the first peptide
find the positions of {pi, p2, ..., Pn) such that the conformational energy level
(C) is the lowest"

3/>: min I £C(/;,.)!

Equation 1: Simplified Assumption

Of course, this is a drastic over simplification of the PSP problem because there

are many molecular chemistry concepts that we have not yet taken into account. The

earlier assumption that a peptide only has a single dihedral angle is intuitively wrong.

We know from basic geometry that to position an object in 3D space we must use three

angles to define rotation about the x, y, and z-axis. Thus, in molecular chemistry, a

polypeptide is viewed from the description of a single peptide unit. The polypeptide has

a direction associated with it for geometric and scientific description purposes. The

peptide begins at the a-amino and ends at the oc-carboxyl group. (Refer to Figure 1.)

Each peptide has three associated angles: ¥ (psi), <|> {phi), and a> (omega).

A single "Residue"
or

"Peptide Unit"

Figure 1: A Three Amino Acid Protein

A peptide can be considered rigid and planar about the co dihedral angle2, but

this simplifying assumption still allows each peptide structure to rotate at either side of

the a-carbon because these bonds are pure "single" bonds. Rotations about these

bonds are defines as ¥ (psi) and ty (phi) dihedral angles. Looking at Figure 2, V refers

to the angle of rotation of the plane on the left about the C-Ca single bond and $ refers

to the angle of rotation of the plane on the right about the Ca-N single bond. [22].

J

Figure 2: PFP Simplified

This methodology simplifies the protein molecule's conformation energy calculation to

just the dihedral angle specified for each peptide. It does not take into account the

rotations of protein side-chains.

So far, we have discussed how each of the peptides connects in order to form

the overall protein. This is called the molecular backbone of the protein, and it is

distinguished by regular repeating amino acid sequences, but the protein also contains

side-chains. Side-chains are distinctive non-repeating chemical structures [22]. Figure

1 and Figure 2 indicate the side-chains as a single R atom, but they can be comprised

2 co is held to 180°

of many atoms and vary in length. The dihedral angle(s) formed by the side-chains are

designated by % (chi). Each protein can have many % dihedral angles. Equation 2

indicates the basic data requirements per peptide to completely define the PSP

problem's structure.

<D = <0-360>

X, =(0-360)

Equation 2: Psi, Phi, and Chi Constraints

Of course, there are still other requirements to meet, but these "requirements"

only serve to constrain the possible positions these angles can hold (i.e., no two atoms

can occupy the same space, two bonded atoms cannot be separated by more than a

few angstroms, etc.). Refer to [14,15, 18, and 37] for a more complete discussion. It is

sufficient for our discussion here to understand that the positions of each atom within

the protein molecule can be defined by Equation 2.

1.2 Genetic Algorithms

Genetic algorithms (GAs) are semi-optimal stochastic search algorithms that are

capable of providing "good" solutions to intractable problems. In practical applications,

the execution time of a genetic algorithm is typically dominated by the fitness function

calculation. This function is problem domain dependent and usually of polynomial time

complexity. The use of GAs plays an important part in the search for near optimal

solutions in large search spaces. Such search spaces (landscapes) are so large or

complex that deterministic methods flounder due to the combinatoric issues. The

algorithmic power of GAs come from their robustness, and their ability to generally find

"acceptably good" solutions to these complex problems "acceptably quickly" [13]. GAs

are loosely based on theoretical evolutionary processes [16]. Therefore, many of the

terms associated with evolution and biology are interchangeable with terms created

specifically for GAs3.

GAs work on populations of solutions called chromosomes. Historically, the first

well-known genetic algorithm was the simple GA (sGA) developed by Goldberg. sGAs

perform three basic operations on the chromosome populations: selection, crossover,

and mutation [15]. The algorithm steps through these three operations repeatedly until

Reference Appendix A: Background on Genetic Algorithms by Charles Kaiser

some stopping criterion is met. The execution of a single pass through these steps is

called a generation.

The sGA accomplished several important tasks for the genetic algorithm

community - the most important was validating the effectiveness and efficiency of GAs

in general. Over time, research suggested that a class of problems, called "deceptive

problems," cannot be effectively evaluated by the sGA [1]. This class of problems is

characterized by having coding function combinations that have misleading low-order

building blocks causing the GA to converge to sub-optimal points. Therefore, some GA

researchers ushered in the era of the linkage investigating genetic algorithms (LIGAs)

[1, 2, 4, 5, 7, 8, 9]. The algorithmic concentration of this thesis research is on the LIGA

family of GAs.

1.3 Parallel & Distributed Computing

GAs are easily parallelizable because one can execute multiple copies of the

same GA program with different subpopulations on different processors and select the

best solution after the last processor has terminated. Two general forms of parallelism

exist which can lead to performance improvements when algorithms are implemented in

parallel: data parallelism and control parallelism. These parallelization techniques are

discussed in APPENDIX C. The properties that can be most profitably exploited depend

upon the problem domain, the specific GA algorithm, and the parallel architecture

chosen.

A problem is well-parallelized if it can be computed very quickly by an algorithm

which uses a feasible amount of processors [44]. A natural way to uncover whether or

not a particular algorithm is parallelizable is to determine if it belongs in Nick's Class

(NC) [44]. NC contains the class of computational problems that can be solved on the

parallel random access machine (PRAM) model by a deterministic algorithm in

polylogarithmic time using only a polynomial number of processors. (The PRAM

theoretical model of computation is formally defined as a computer consisting of p

processors and a global memory of unbounded size that is uniformly accessible to all

processors [36].) In general, NC includes algorithms that satisfy:

T (n) = n! log' n with

«'' log1» i * />(„) = „i =$ Tn[n) = T— = log n

where, Ts = sequential execution time,
TD = parallel execution time.

Equation 3: Mathamatical Representation of NC Problem

Genetic algorithms are one such class of algorithms that satisfy this NC structure.

A wide variety of parallel architectures have been designed and implemented.

High level design options include: single instruction, multiple data stream (SIMD) - a

single control unit dispatches instructions to each processing unit; multiple instruction

stream, single data stream (MISD) - each processor performs different operations on a

single data stream (i.e., vector processors); multiple instruction stream, multiple data

stream (MIMD) - each processor is capable of executing a different program

independent of the other processors [36]. No single architecture, of course, has been

shown to be clearly superior for all applications.

1.4 Visualization

The basic premise of scientific visualization is the use of computer-generated

pictures to gain insight from the data [60]. This is still a very active and vital arena of

research. In particular, the GA community does not have a solid foundation of

visualization techniques. On the other hand, commercial packages for visualizing

proteins, polypeptides, and other molecule are readily available (i.e., Quanta, RASMOL,

Cerius, etc.). Alas, these commercial packages only allow the user to visualize

postpartum. Currently, there is no software package available which allows the user to

manipulate the molecule as it folds. This is due to the fact that to view the folding

protein the update rate of the visualization would need to be on the order of a

femtosecond (e.g., 10"15 seconds). On the other hand, our contribution to this vestal

area of expression is the ability to visualize the search space traversed by the GA.

As we discussed previously, the PSP search space is massively "huge" when

visualized in 2 dimensions. But when viewed in its true n-dimensional form where n

equals the number of independent variables entered into the energy function, the search

space is drastically reduced being bound in all dimensions by 360°. Except now we

have the problem of rendering a 25 dimensional picture for just even for a small protein

such as [Met]-Enkephalin! Some research indicates that the resulting image is a 25

dimensional funnel4. We have attempted to transform this insurmountable situation into

a comprehensible rendering in just 3-dimensions. Our approach takes full advantage of

mathematical norms and color to produce an indication of the PSP problem domain

landscape and the path in which the GA traversed to find the minimum.

1.5 Research Objectives & Rationale

The goal of this research is to investigate the protein structure prediction

problem using the spectrum of Evolutionary Algorithms such as genetic algorithms,

evolution strategies, and evolutionary programming. The summation of the research

directly contributes to the continuing efforts of the United States Air Force Research

Laboratory's (AFRL) search for a robust and efficient technique to expedite their efforts

in developing new materials. In particular, AFRL is interested in developing

chromophore-substituted polymer chains with control optical properties, so-called smart

filters or optical switches [37].

The specific intentions of the research are decomposed into the following

objectives:

OBJECTIVE 1: Investigate the protein structure prediction problem.

RATIONALE: To understand the problem domain.

1) Learn key PSP concepts and terminology.
2) Understand scientific limitations that restrict "our" ability to directly measure a

protein's folding process.
3) Understand different methods for measuring a protein's conformational

energy (i.e., x-ray crystallography, nuclear magnetic resonance,
computational mechanics).

OBJECTIVE 2: Investigate the spectrum of Evolutionary Algorithms such as

genetic algorithms, evolution strategies, and evolutionary programming.

RATIONALE: To understand the chosen algorithm domain.

1) Develop at least one building block propagating GA based upon analysis (i.e.,
Selfish Gene GA, Linkage Learning GA, Compressed Linkage Learning GA,
or Gene Expression Messy GA).

2) Integrate building block propagating GA with the CHARMm energy function
for the PSP problem.

3) Compare building block propagating GA with fast messy GA (fmGA) currently
in AFIT Toolbox, for effectiveness in finding conformational energy states,
(sequential model: Are we getting a corrected answer? - effectiveness)

4 See Chapter 2.

4) Compare building block propagating GA with fmGA for efficiency in finding
conformational energy states, (sequential model: Are we getting the answer
in comparable time? - efficiency)

5) Parallelize building block propagating GA using farming model for fitness
evaluations and compare to parallel fmGA (pfmGA) based on effectiveness
and efficiency in finding conformational energy states, (parallel model: Are
we getting the correct answer in a comparable amount of time?)

OBJECTIVE 3: Develop a bounding filter using accepted molecular biochemistry

concepts in order to curtail the number of solutions possible in an attempt to limit the

fitness landscape.

RATIONALE: AFIT's previous work in this area curtailed our ability to use the

product of the research in other Evolutionary Algorithms or different search

methodologies.

1) Create bounding function using Ramachandran Plots and coordinate
transformations using portability as key design consideration [37].

OBJECTIVE 4: Apply Evolutionary Algorithms integrated with problem domain

fitness functions to a variety of test cases (larger proteins -> more atoms) in serial and

parallel implementations.

RATIONALE: AFIT's previous research has been confined to a relatively

noncomplex 5-residue protein. The higher complexity associated with "larger" proteins

(i.e., 100-residues) must be determined and overcome.

1) Port AFIT research efforts to larger proteins.
2) Develop a set of procedures for GA integration with larger protein

representation.
3) Investigate automation.
4) Create a USER'S GUIDE for developed building block propagating GA, the

current implemented fmGA, and the current implemented pfmGA.

OBJECTIVE 5: Create effective algorithm visualization methodology to facilitate

future PSP an GA researchers.

RATIONALE: The pattern in which an Evolutionary Algorithm searches a

problem domain landscape is inherently difficult to visualize. The product of this

research should allow future PSP researchers to "see" the problem domain landscape

being uncovered.

1) Build GA solution space visualization tools (2D phenotype vs. genotype) -
automated

2) Build GA search space visualization tools (3D mapping of search area) -
automated

10

3) Create and document methodology of electronically porting final protein
"answers" produced by GA into VMD or other visualization tools for structural
comparison with "actual" conformation.

1.6 Methodology

The existing CHARMm energy model developed by Brinkman [18] and modified

by Gates [15] is integrated with the Linkage Learning Genetic Algorithm (LLGA)

developed by Harik [17]. It is engineered to incorporate parallel constructs (the parallel

LLGA) and Ramachandran constraints (constrained pLLGA & constrained LLGA).

The serial and parallel implementations are compared for correctness and

performance gains. Then, these algorithms are compared against previous AFIT results

for the fast messy GA [15] and hybrid GA [37]. The constrained implementations are

compared against Kaiser's work involving real value constrained GAs [37]. Finally, the

protein conformations uncovered in the GA searches are transformed by our

visualization software to produce an image of the traversed search space.

1.7 Assumptions on Research Context

There are several assumptions limiting the research scope as presented in this

thesis:

♦ The GAs in AFIT's Genetic Algorithm Toolkit (AGCT) work correctly (see Figure
24).

♦ The CHARMm energy model implemented by previous master students works
correctly and the correct z-matrix, RTF, and parameter files are available.

♦ Any software developed is considered "engineering software" and may include
design alternatives that do not completely follow sound software engineering
principles.

♦ The reader has a basic understanding of GAs, computer science, parallelization
techniques, and scientific experimentation as an aid to understanding Chapters
2, 3, 4, and 5.

These assumptions are included to curtail the scope of this thesis presentation.

1.8 Overview
This chapter has introduced the general research problem (i.e., the PSP/PFP),

described the main elements of the approach, and rationalized the need for expanding

the research effort on GAs and the PSP problem. The rest of this thesis is decomposed

into six areas. CHAPTER 2 discusses the problem domain associated with the PFP

problem, justifies the selected energy model, covers the problem domain/algorithm

domain integration, and presents a visualization tool. CHAPTER 3 explores different

linkage investigating genetic algorithms (LIGAs), which we apply towards solving the

11

PSP problem. CHAPTER 4 presents the details for parallelization of the selected

solution approach. CHAPTER 5 explains the experimental design, and CHAPTER 6

analyzes the results of these experiments. Finally, CHAPTER 7 concludes this thesis

and presents direction for future PSP/PFP voyagers.

12

2.0 Literature Review

2.1 Introduction

Many articles have been written covering the basics of the Protein Structure

Prediction (PSP) problem, it is our intention here not to duplicate these efforts [3,14, 15,

18, 19, 21, 37, 48, 50, 61, 63, 64]. The reader is directed to APPENDIX A for the basic

PSP background information. The intent of this chapter is to cover areas of the PSP

problem that directly impact our efforts. Mainly, the PSP landscape is discussed in

Section 2.2; Section 2.3 justifies our energy model selection; Section 2.4 summarizes

our approach to bounding the search space; and our unique visualization technique is

reviewed in Section 2.5.

2.2 PSP Landscape

The most challenging aspect of the PSP problem is that the conformation energy

calculation creates an enormous number of local minima. Therefore, any attempt using

local minimization techniques usually becomes caught in arbitrary local minima. These

minima can be arbitrarily far from the global minimum. The small differences between

the assumed conformation energy and these minima makes it extremely difficult to know

how close one is to the accepted energy minimum simply by comparing to the calculated

energy. It is assumed that the protein's geometry defined by the naturally occurring

conformation is the global minimum [50]. Note that the energy model used and the

refinement of the input data required in the model define the size of the energy

landscape (i.e., the search space)5.

For example, lets assume an energy model that only requires as input the

dihedral angles of a protein that consists of 24 dihedral angles. If each dihedral angle

were allowed to rotate freely about each bond without considering any constraints, then

Equation 4 would model the size of the conformation space.

search space = cls

where d is the number of values each dihedral angle can assume

N is the number of independently variable dihedral angles

Equation 4: Size of the Landscape

See Section 2.3 for a discussion of the different energy models used in PSP calculations.

13

For argument's sake, we allow two atoms to occupy the same space and let the

energy model indicate the invalidity of the resulting protein6. Therefore, supposing that

each dihedral angle has 360 possible values, our example protein would have

approximately 2.25e+61 different orientations7. If only one tenth of these orientations

belonged to the set of possible minima, then there would be 1 out of 2.25e+60 chances

of randomly finding the global minimum.

The search space terrain of such a protein is extremely rugged consisting of

millions of valleys and peaks. How a protein, with no known memory capability, finds

the global minimum in this complex landscape is still a mystery. The process is driven

by forces of physics yet to be understood! Experiments suggest that a protein's

approach to the global minimum is characterized by two phases. The first phase is a

rapid folding phase that results in a nearly folded protein. This is followed by a lag

phase which completes the folding process [50, 51]. This suggests the existence of a

large energy barrier with many saddles around the valley containing the global

minimum. See Figure 3 [50].

\ j
\ 1

V ■ j ■

I \ / \ 1
I \ / \ I -■
I \ / \ /

; | ■ : j mfetasfeable \ /

|

I < Äable'T^ |

rä.r^ tmmili&m ' Üraqi&erLt
t,r«ini i t iacis

F.IO. 5. A. metmtahle state with high mergu barrier.

Figure 3: Metastable State

6 An invalid protein would be represented by extremely high conformation energy.
7 Some of trie produced proteins cannot exist outside of this model.

14

Other scientists argue that the conformation state might be a metastable state

with high barriers, or it might just be the lowest local minimum that is kinetically

accessible from most of the protein's energy space [50]. These landscape descriptions

allude to the possibility

that a naturally occurring

protein may not reach its

global minimum energy

conformation. This is

supported by Kaiser's

experiments that

uncovered a conformation

of [Met]-Enkephalin with a

lower CHARMM energy

value then previously

encountered [52].

Figure 4: The Glassy
Funnel

The most

promising fitness

landscape description is

referred to as the glassy

behavior [50]. (See

Figure 4 by [64].)The

glassy behavior is defined

by the situation when the

naturally folded state

corresponds to a more

extended region in the

search space where there

are many closely located

minima of approximately

0.2 0.4 0.6 0.8 1
P

FIG. 1. The energy landscape for a folding protein. The major
phenomonologicai parameters needed to capture this landscape in-
clude: the width of the runnel at small values of native similarity,
indicating the entropy of denatured states; the roughness of the
landscape, AE, which is related to the glass transition temperature, Ts;
the stability of the native stste relative to the collapsed but non-native
(molten) globule states, the energy gap. The ribbon diagrams of the
ct/ß protein, segment Bl of streptococcal protein G (GBJ) provide
structures from ensembles of unfolded, molten globule, and «alive
conformations. The folding landscape for GB1 is projected onto two
coordinates, the radius of gyration, Rs, of the folding globule, and the
fraction of native contacts, p, which indicates how close the folding
protein is to the native. The free energy change as folding occurs is
shown as. a contoured surface: (native) state corresponds to the blue
region and the most unfavorable unfolded state is represented by the
green contours.

the same energy. The differences between the global minimum geometric structure and

15

these false conformations are beyond our current scientific limits to measure8.

Furthermore, when one of these false conformations is entered into our chosen energy

model, the resulting energy can differ from the naturally occurring conformation energy

by only a few kilocalories. Normally, there is only 10 kcal/mol difference between the

completely folded and unfolded conformation [37].

The glassy funnel landscape model combined with the experimental data of rapid

initial folding followed by a lengthy lag time to reach the global minimum energy state

explains the Levinthal paradox which has confounded researchers for years. The

Levinthal paradox simply states that "the time a protein needs to fold is by far not large

enough to explore even a tiny fraction of all the local minima believed to comprise the

fitness landscape" [37, 50]. On the other hand, "when the slope towards the native

conformation is dominant over the ruggedness of the landscape, folding kinetics is

exponential and [therefore very] fast [50]." This insight allows us to picture the protein

quickly folding to an orientation near the native conformation - i.e., the initial rapid

folding period. Then, if we imagine this "near orientation" resting on a relatively smooth

valley floor, "the lengthy lag period until the protein 'finds' its native conformation" can be

conjectured as the protein searching this small area.

2.3 PSP Energy Models

In order to understand and manipulate proteins, we must be able to reliably

predict the tertiary structure of the protein in a reasonable amount of time. Generally,

there are three different methods to uncover the conformation state of a protein: X-ray

Crystallography, Nuclear Magnetic Resonance, and Computational Models. X-ray

crystallography and nuclear magnetic resonance spectroscopy are direct methods of

measuring the position of each atom within a protein. These methods are extremely

time consuming, error prone, and laborious9! Computational modeling, on the other

hand, is somewhat less time consuming and easier to conduct, but these methods are

approximations and may not precisely reflect the native structure of a particular protein.

Although computational modeling has many shortcomings, it is still an area of utmost

interest to biochemists because this form of calculating the native structure provides the

greatest possibility of shortening the gap between the discovery or design of a new

8 Simulation time steps required to accurately model the folding process are on the order of a
femtosecond (10'15 second) due to the thermal oscillations of bonded atoms [37].
9 See Appendix B. Current Methods for Protein Structure Prediction

16

protein and learning its conformational structure. APPENDIX B provides an overview of

the x-ray crystallography and nuclear magnetic resonance spectroscopy, and an in-

depth look at the different forms of computational modeling.

The particular computational model we are interested in is the CHARMm

(Chemistry at HARvard using Molecular Mechanics) energy model. CHARMm,

developed principally by Brooks and Bruccoleri [42], is an empirical energy function

used in the investigation of the physical properties of a wide variety of molecules. The

model is executed on a molecule at a particular temperature in a particular solvent

(usually water). The model is based on separable internal coordinates and pairwise

non-bonded interaction terms [42]. The model is a composite sum of several molecular

mechanics equations. Each is decomposed into its terms in the following series of

equations:

Equation 5: Bond & Angle Energy Equations

Equation 5 accounts for bond and angle deformations which in most cases at

ordinary temperatures and in the absence of chemical reactions are sufficiently small for

the harmonic approximation to apply [42].

£* = 21**1"** cosf"*)
dihedmte

Equation 6: Torsion Potential

The torsion energy term, Equation 6, is a four atom term based on the dihedral

angle about the axis defined by the middle pair of atoms. For this term, the energy

constant can be negative (indicating a maximum at the eis conformation10), and there

may be several contributions with different k* and different periodicity's for a given set of

four atoms [42].

/•-' = Tit,,{.(0-0) V
intpmp?rtdlh&drat$

Equation 7: Improper Torsion

10 See Figure 7.

17

The Improper Torsion term was developed to maintain chirality about a

tetrahedral extended heavy atom11, and to maintain planarity about certain planar

atoms12 with a quadratic distortion potential. Without this term, out-of-plane potentials

tend to be quadratic. In addition, the term provides a better force field near the

minimum energy geometry [42].

Equation 8: Lennard-Jones Potential

The Lennard-Jones Potential equation accounts for the van der Waals forces of

attraction and repulsion energy (the Ay and By terms) and the electrostatic attraction and

repulsion energy [42]. This equation is the major contributor to the overall energy

calculation.

\JL* I ■i
m

r'.\n r'.u)\
cus'"(0.w, „Ucos'te,,, , „V

Equation 9: Hydrogen Bonding Energy Reduction

Equation 9 accounts for a reduction in the van der Waals term between the

hydrogen atom and the acceptor atom [42].

Distance Constraints: /:,, =]T Ks (r.

Dihedral Angle Constraints:

1o>1

Equation 10: Water-Water Interaction

The two equations, in Equation 10, account for water-water interaction when

manipulating the solute in a water solvent. The distance "constraints" (atomic harmonic

constraints) are used primarily to avoid large displacements of atoms when minimizing,

while still allowing the structure to relax. The dihedral angle "constraints" are used to

maintain certain local conformation or when a series of different conformations need to

be examined in making potential energy maps [42].

&totai —Eb+EB+E^-¥Ew-^rE^jw + Ed 4-Ehb 4-E<:r + E^

Equation 11: Complete CHARMm Energy Equation

12
E.g., an a carbon without an explicit hydrogen.
E.g., such as a carbonyl carbon.

18

The CHARMm model is almost a verbatim implementation of Equation 11. The

terms kb and r0, k0 and 0O, k0 and a», Ay, and By are empirical constants supplied as

input. These parameters are calculated from "known" protein conformations supplied by

the Brookhaven Protein Database (the official repository of protein structures) operated

by the National Institute of Health. The number of bonded atoms, the number of atoms

forming bond angles, atoms forming dihedral angles, and non-bonded atoms13 are

determined based on the molecule supplied to the model and can be distinguished prior

to model execution.

The AFIT implementation of the CHARMm model does not account for each of

these terms. In the original implementation by Brinkman and the later revision by Gates,

the hydrogen bonding reduction and water-water interaction terms are excluded

because they do not significantly contribute to the overall molecular energy. Therefore,

the AFIT implementation does not completely model the molecular interactions (see

Equation 12), and we can imagine AFIT's CHARMm implementation as modeling the

molecular interactions in a vacuum. This is, of course, a common way to calculate the

protein structure's energy.

£|.-«: = '-B + /:'o + '-* + £» + En* + enerzyconstl

Equation 12: AFIT's CHARMM Implementation

Furthermore, Gates indicated "other" errors in the primary implementation, and

he corrected them in order to ensure AFIT's model corresponded with the QUANTA™

software package by the addition of the energy constant [14].

CHARMm was chosen as our energy function because it models the most

contributing factors as compared to the other commercially available empirical energy

function. Table 2 provides a comparison between several currently available empirical

energy functions of the energy terms they calculate. As the number of energy terms

included within the model increases, the corresponding complexity/ruggedness of the

protein energy landscape also tends to increases. The energy models listed in Table 2

are in order by decreasing complexity of the energy landscape (e.g., CHARMm models

the most complex landscape of those energy models listed). The smoother the

landscape the less complex and time consuming it is to calculate the protein structure's

energy, because fewrer terms are included. Of course, the calculated energy tends to

be less accurate.

13 All atoms with three or more bonds separating them are considered non-bonded [15].

19

Initials Name Eb E„ E* fcw tnon-bonded Eei Ehb Ecr HÜPB

CHARMm Chemistry at
Harvard using
Molecular
Mechanics

X X X X X X X X X

AFIT
CHARMm

X X X X X X

Amber Assisted Model
Building with
Energy Refinement

X X X X X X

ECEPP/3 X X X X
OPLS Optimized

Potentials for Liquid
Simulations

X X X

Table 2: Comparison Between Commonly used Energy Functions

2.4 Bounding the Search Space

Kaiser's work greatly influenced our efforts at constraining the search space of

the PSP problem. As we know, enumerating the whole (discretized) search space is an

intractable problem. Therefore, if there were any "generic" way to limit the search

space, it would be beneficial to incorporate into our algorithm.

Kaiser covers the basics of the geometry found within the backbone of a

polypeptide and briefly discusses Ramachandran Plots [37]. But to fully understand

Ramachandran's work, we must start by defining a peptide unit14. The peptide unit is a

rigid planar array of four atoms: nitrogen, hydrogen, carbon, and oxygen [22]. The

peptide unit is considered rigid and planar because the bond between the carbonyl

carbon (referred to as either CY or C) and the nitrogen atom is not free to rotate. This

bond has partial double-bond characteristics [22]. (See Figure 5.)

The peptide unit is the building block of al! proteins. It is also commonly called an amino acid.

20

Figure 5: Partial Double-Bond Characteristics

Several peptides joined together by purely covalent bonding form a chain called

a polypeptide [22]. The complete chain of peptide units define the backbone of a

protein, and once a polypeptide backbone is configured with its appropriate side

chain(s), it is commonly considered a protein15.

Rotations about the bonds within the protein are described as torsion or dihedral

angles that are usually taken to lie between -180° and +180° [22, 63]. There are three

distinct types of dihedral angles within the protein's backbone. Table 3 lists how they

are commonly referenced.

Using these conventions, a protein can be characterized as being in either the

trans or eis position. The trans position refers to when each of the omega (GO) dihedral

angles assumes a 180° orientation16 [22, 63]; on the other hand, the eis formation is

characterized as the co's assuming an 0° orientation. The trans polypeptide form is

naturally favored over the eis formation by approximately 1000:1, because, in the eis

form, the Ca atoms and the side chains of the neighboring residue are in too close of

proximity [63]. The closely positioned side chains greatly influence the pairwise atom

interaction energy calculated by the repulsion term in the van der Waals equation (refer

to Equation 8 or B.2.3.1.1.3 Non-Bonded Energy). This term becomes vary large

when the distance between the atoms involved becomes slightly less then the sum of

their contact radii [31]. Figure 6 and Figure 7 illustrate the trans and eis formations

[63].

15 Proteins are produced in eukaryotic organisms through the process of transcription which
begins with the transcribing of the DNA into messager RNA which is then translated into a protein
in the ribosome [65].
16 Protein angle numbering convention use a unit circle where 0° is at the top and -1807+180° is
at the bottom. Negative degrees are measured counter-clockwise, whereas positive degrees are
clockwise.

21

? o
<XX K3 O-1' i—0

5C2

N 1 c 1

'5''
(c !

o
Figure 6: The trans Formation

Figure 7: The eis Formation

Therefore, if we assume the co dihedral angle is held in the trans position, then

the phi (O) and psi OF) dihedral angles define the backbone of a polypeptide [37].

Allowing slight deviations from the polypeptide's planarity of either the trans or eis

conformation, by allowing the co angle to deviate by -20° to +10017, is thought to be only

marginally unfavorable energetically in most peptide bonds [63]. Thereby, all three of

the angles are responsible for defining the correct folded state of a large molecule.

Ramachandran et al developed constraints for allowable configurations for

polypeptides based upon his two-parameter convention. Ramachandran proposed that

it was possible to rotate around the N-ccC and the aC-CY when the groups were linked at

the aC atom [61]. Consequently, the relative configuration of two peptide units about

the ocC atom are specified by just two parameters which he called cb and 0' [61]. (See

Table 3 for translation.)

22

Bond Ramachandran Standard
N-(xC * * (Phi)
uC-C 6' \|/ (Psi)
C'-N — o) (Omega)

Table 3: Bond Angle Conventions

The complete configuration of a polypeptide chain is fully specified when each of

the ocC's parameters (<|>, §') are known [61]. Furthermore, Ramachandran developed a

set of allowable regions for these parameters based upon his choice of permissible van

der Waals contact distances using a hard sphere model of the atoms and fixed

geometries of the bonds18 [61, 63]. Table 4 has a comparison of permissible van der

Waals distances as defined by Ramachandran and by Stryer [22, 63]. Ramachandran

concluded that two sets of bounds were possible. These bounds, termed "normally

allowed" and "outer limit," were derived from a detailed analysis of available structural

data including amino acids and peptides [61].

Contact
Ramachandran Stryer

Normally Allowed Outer Limit Radii

C...C 3.20 3.00 4.0
C...0 2.80 2.70 3.4
C...N 2.90 2.80 3.5
C...H 2.40 2.20 3.2
o..,o 2.80 2.70 2.8
O...N 2.70 2.60 2.9
O...H 2.40 2.20 2.6
N...N 2.70 2.60 3.0
N...H 2.40 2.20 2.7
H...H 2.00 1.90 2.4

Table 4: Comparison of van der Waals Contact Distances

Based upon his steric constraints, "the permitted ranges for (§, §') were obtained,

shown in Figure 8 [61], corresponding to an angle of 110° between the N0-aCi and ccCr

Cy1 at the cc-carbon atom [61]. "When we allow this angle to vary slight from 105° to

115°, the allowed regions are altered slightly [61]".

17

18
For the trans conformation, the range of co is -160° to +170°.
Commonly, refer to as Steric Constraints.

23

3&?i

„Ss

*M&MW.IKMm mm***-

"*.

—ML

IBS5"*-
«»«»dlUIHfil««

)

sr"~''

3 St UO)
t P-C- ;MiWä tVfl 114}

6-

r
K_LJ

A®
U

cf

Flo. $, Coftimzm of ccoifci4.aa% n- (-

l«P &Ö6

-) sn« cona&tnt K {« - — - -) osmJspotscLiisij to ilü
fcKgte X—aC—C— 110'. Th« boundaries of the fis'lly aikmiKl *a<l outer lirait region* *rö «!«>
shovm .

Figure 8: Original Ramachandran Plot

Our proposed constraint system is heavily based upon the work and results of

Kaiser and the Ramachandran Plot. Kaiser's constrained-GA made use of an existing

GA package, GENOCOP III. He incorporated his constraint system directly into the

GA's manipulation of the chromosome [37], but his constrained-GA could not generate

an initial population of 50 members using his defined feasible solution space because

the feasible search space is much smaller than the entire search space [37, 52].

Therefore, Kaiser had to use a hand picked initial population.

It is commonly understood that any constraints placed upon a GA hampers its

execution time. Normally, GAs have two choices when they encounter "disallowed"

chromosomes: 1) excluded and replace19, or 2) repair the chromosome. If the

disallowed chromosome is excluded and replaced, we may find that the GA spends an

overwhelming amount of time finding "allowable" chromosomes, depending upon the

ratio between the "allowable" search space and the "complete" search space. On the

other hand, if we repair every "disallowed" chromosome, the GA must first recognize

"why" the chromosome is not allowed and then repair the particular gene(s) in violation.

This operation usually overwhelms the GA because it now must have problem domain

19 Kaiser's implementation followed this method.

24

information embedded within its algorithm. Summarizing Kaiser's work leads to the

conclusion that constraints on the search space are "good," but his implementation lead

to preconvergence and "islands" of feasible solutions that didn't allow his GA to traverse

the search space to find the optimum solution [37].

What we propose is a better way to overcome the preconvergence and "islands"

of feasible solutions situation. Our system guarantees that the chromosome encoding

mechanism ensures that the allowable genes are represented and maintained

throughout all GA operations.

AnliprsrRllel

left-handed
ä helfe«

not otecrvedJ

v

Parallel
j 1 % sheet)

o| Bight-handed

Figure 16-6
i Ramachandran plot shcyräig ulfowud v-aJuts. of 4 a.ßd >p far i-alaninc rcsWu«?
%rct;n iiegbits). Additional conformadoTts nr^nocettfihU? i« glyeine tyxdkvw i«-
Igions) because it 3K« ;I vpry- small «tte ehfriji.

Figure 9: Stryer's Ramachandran Plot

We have devised another scheme to represent the search space using the

Ramachandran Plots and affine transformations on the x- and y-axis that ensures all GA

operators retain "feasible" solutions. The Ramachandran Plot is the key to our system!

At first glance, Figure 9 [22] makes it seem as if there are four distinct allowable regions

based upon the values specified for (O, \\f). But after a simple coordinate

transformation, it is easy to see that the Ramachandran Plot doesn't actually create four

25

regions, but rather just one smaller region within the complete space illustrated in

Figure 10. The transformation is mathematically defined as:

If® < 180° then 4> , =<I> tuzw ÄÖ/&K« new

lf<l> > ISu" then

O , = lO - 360°

ffV^SlSO0 «ie^,ilTOi=v„

My = * normal ^-360°!

Equation 13: 1st Coordinate Transformation

Still there are "infeasible" regions within Figure 10. (i.e., The white space

surrounding the yellow and green colored "bubble" represents unreachable <E> and \\f

angles.) Therefore, we have relocated the coordinate system origin, (0,0), to

correspond to two tangent lines and restricted the lengths of the axes to only span the

feasible region - see Figure 10 and Figure 11.

360'

CO

<

Li

IP

o° O-Axis
^
360°

Figure 10: Applying 1st Transform

360'

—
X
<

31'0°i

x

pä"

2o8tSfF~,,..-,.Ti , ...,..>>,—p-MpiL,—,

O-Axis 36°°

Figure 11: Repositioning the Origin

Now, the new O-axis (called O'-axis) corresponds to a tangent which intersects

the point in the feasible region closet to the original <E>-axis, and likewise for the \|/-axis

(called vj/'-axis). In past implementations, we have always assumed that the

chromosomal encoding beginning at the origin (0°) and proceeding to 360°, represented

by 2° to 210 respectively. But with this new coordinate system, this is no longer the case!

26

The new (0,0) coordinate at the <I>'-axis/Y|/'-axis intersection is approximately 20 up the

\|/-axis and 40° down the O-axis. Furthermore, the upper bounds of the O'-axis and v|/'-

axis are less by approximately 36° and 50°, respectively. This second transformation is

mathematically defined by:

ru- _<T))\

new
360s

+ 4' m i'

»nd Equation 14: 2 Coordinate Transformation

Figure 12 illustrates the 2 transformation for the O-axis to the O'-axis.

lower

40° / 2°
upper

324° / 210

I I > I 'I V

0LAxis

0°/ 2C "■""^^^■^^■^l

O -Axis 360° / 21

Figure 12: O-Axis Transformation

Our scheme allows the GA to process the chromosome's backbone independent

of representation and guarantees that for all GA operators the transformed chromosome

is in the defined "feasible" region of the Ramachandran Plot. These transformations

only work for the polypeptide backbone configuration and does not account for side

chains!

For the side chains, we consulted with Dr. Ruth Pachter (AFRL) to determine

feasible ranges. Dr. Pachter validated the % angles, as well as the backbone angles,

proposed by Kaiser [37]. Therefore, the ranges he proposed for the backbone angles

and side chains are used as our limits as well. This allows us to make direct

comparison between his work and ours. Our constraint system incorporates the

chromosome encoding explicitly (see Table 5 and Table 6 for our limits [15, 37]), and

the transformations into the proper angular configurations are accomplished in the

objective function (e.g., within AFIT's CHARMm energy model implementation). This

ensures that all future AFIT PSP researchers can use any contribution from this

27

constraint system without having to manipulate their particular GA of choice. Appendix

I contains Newman projections illustrating the constraints in Table 5 and Table 6.

Dihedral Midpoint Radius "min "max

>PjKjn-qlvclne -120 90 -210 -30

 Wgivcine -180 135 -315 -45

V 60 150 -90 210
CO -180 20 -200 -160

71 -60 160 1180 30 -75 145 1-185 -45 175 1-165

Table 5: Loose Constraints for [Met]-Enkephalin

Dihedral Midpoint Radius «min wmax

<& -67.5 22.5 -90 -45

V -30 30 -60 0
<a 180 20 -200 -160

Xi -60 160 1180 30 -65 155 1-185 -30 190 1-150

Table 6: Loose Constraints for Polyalanine

2.5 Visualizing the Search Space

Visualizing the search space traversed by the GA is simply mind-boggling. If we

assume the standard AFIT representation of 10 bits per dihedral angle and account for

each dihedral angle in [Met]-Enkephalin on the x-axis, we yield a 240 bit representation

for each chromosome which indicates one energy value on the y-axis. Since the x-axis

is discretized, we can reduce this seemingly continuous line into a fixed interval using

the natural numbers. Therefore, we have 1.7668e+72 numbers across the bottom of a

2-dimensional graph. This number of x-values makes the problem of visualizing the

GA's traversal through the energy landscape beyond the scope of available software

tools and computational platforms. On the other hand, the requirement to understand

this space remains. The purpose of this section is to explain how we intend to

graphically visualize the PSP landscape.

Ideally, the best way to visualize the relationship between the molecule and the

energy landscape would be in 8-dimensional space where 8 represents the number of
20

dihedral angles. This would reduce the problem to graphing 1024 points on each axis.

Alas, there is also no mathematical way to represent 24-dimensional space. Therefore,

we have derived a technique to reduce the numerical span of the first purposed

visualization methodology to approximately 1934 points which is graphable using

Mathlab TM

28

Mathematically, we have used a p-norm projection across the x-axis to make the

discrete range of 2240 into a metric data scale using Equation 15 where p = 5.

d(fn. fin) j\ptP(D^a)-P^Dm,a)\p+\P1P(D^)-Pw(Dm,a)'i'')ia

Equation 15: p-norm

Therefore, each 10-bit representation of a dihedral angle is a separate PFp term within

the equation. This transformation ensures that the representational distance between

the x-axis values is maintained. Other norms were considered, but since we were trying

to compress the data in order to produce a visualization which would easily fit on a

single page without a reduction size the 5th-norm worked the best. Figure 13 shows the

compression rate of the a few different norms. The quicker the curve grows the more

the data is compressed, but the representational distance between any two points on

the x-axis is maintained!

20 Each dihedral angle is represented by 210 or 1024 discrete values.

29

X-Axis Compression

500

450

400

350

f\

»-#--#-•-*- |^-#-»-♦♦-• *H

^♦-•■■•H

<V <* <b <b NO <V Ntx Nfe N% $> # ^ ^ ^> # & ^ # 4» fcO # ^

Number of X-axis Components

y±mx+b

y=xA2

y=xA3

y=xM

Figure 13: P-Norm Comparison

The y-axis, on the other hand, still represents the continuous real value range of

the energy function. Since we are really interested in a small range of negative values

and because it is not uncommon to have a 1e+32 energy value associated with a

molecule, we have chosen to bound the upper limits of the y-axis to +25 kilocalories.

The remaining energy values are illustrated upon the graph by exploiting colored

graphical gamut's located at zero and the x-axis intersection. Table 7 indicates the

color meaning and Figure 14 shows some initial test data reduced as stated here.

Color Range
BLACK (•) .*» _» +25,0
BLUE (x) -25.01 »1.000
Yellow I A) 1.000.01 > 1.000.000
Red (♦) 1,000.000.1 ->~

Table 7: Visualization Legend

30

n

Energy Landscape

u

(

CO
 ISllSBI! llSill 0

_c

-10 -

>_
o

w -15 -
IIHllllHlllliHlllBIIIBlllSSIllllllBliii^lSIIIHIllI

-20 -
•

-25 -

Chromosome Reduction

Figure 14: Energy Landscape Visualization

2.6 Summary

As this chapter indicates, the energy/search landscape of the PSP problem is

huge, extremely complex, and poorly understood. Therefore, there can be enormous

benefits reaped by constraining the space using accepted work from the PSP

community, hence, our development of constraints. Kaiser [37] was on the right path

when he developed the constraints on the dihedral angle, but his implementation left

some modularity to be desired. Our new implementation restricts the search space just

as effectively, may prove to be more efficient, and allows for a modular design by

incorporation into the fitness function. Finally, our attempt to visualize the search space

may lead to a greater understanding of the CHARMm energy landscape discretized by

using 10 bits per dihedral angle. We could discover, however, that this discretization

prohibits us from finding the global minimum conformation energy because our

discretization scheme is too coarse. The next chapter discusses the different genetic

31

algorithms we investigated, and Chapter 4 provides implementation details for our

constraint system.

32

3.0 Linkage Investigating Genetic Algorithms (LIGAs)

3.1 Introduction

Due to the simple genetic algorithm's (SGAs) inefficiency in applications

involving a high degree of deception21, some genetic algorithm (GA) researchers

conceived and gave birth to the family of linkage investigating genetic algorithms

(LIGAs) [1, 2, 4, 5, 7, 8, 9]. The LIGA class of GAs explicitly emphasizes the

importance and use of building blocks. Building blocks are schemata comprised of

tightly linked genes. They consist of coupled values (locus/allele pairs) that work well

together and tend to lead to improved performance when incorporated into a complete

chromosome [13]. The biological concept reflecting "tightly linked genes" (i.e., the

concept of linkage) refers to such bits acting as "co-adapted alleles" that tend to be

inherited as a block (i.e., the building block) [6]. The defining length of a building block

measures linkage. The defining length is the distance between the first and last bit of a

building block, and it is a direct measure of how many crossover points fall within this

significant portion the corresponding schema. This length determines the probability

that the building block is disrupted during crossover [6]. As the defining length of a

building block approaches the length of the chromosome, the probability of disruption

increases because the crossover point probably occurs within the building block! The

Schema Theorem, which implies that by passing on "good" schemata to the next

generation increases the likelihood of finding better solutions, provides the symbolic

foundation for searching and propagating building blocks with low order defining lengths

[6].

In the remaining sections of this chapter, we explain and examine several

different forms of genetic algorithms designed to uncover and propagate building blocks.

This discussion of different types of LIGAs is not all encompassing nor is it intended to

be complete because many linkage learning or building block propagating genetic

algorithms have been proposed [1, 2, 4, 5, 7, 8, 9, 10,11, 12].

3.2 Problems with the SGA

The LIGA class of GAs tries to combat two bottlenecks of the SGA proposed by

Kargupta: 1) the combination of relation, class, and sample spaces, and 2) poor search

33

mechanisms for gene relations [9]. Kargupta explains that the first bottleneck derives

from using a single population as the genetic pool. The relation, class, and sample

spaces are combined with the decision making process. Therefore, each space affects

the others in some undesirable way. The relation space defines "classes" in terms of

the gene sequences within the chromosome. The class space equates to the building

blocks found in the chromosome, and the sum total of all the chromosomes or the GA's

population is the sample space [9]. A real-world example would be "inbreeding." In

human populations where inbreeding is common, we find that the inhabitants

demonstrate similar characteristics (i.e. the sample space). These characteristics are

dominated by nearly identical DNA (i.e. class space elements) because the DNA is

defined by a few nucleotide templates (i.e. relation space).

The other bottleneck can be contributed to the encoding of the typical SGA

chromosome. Fixed-length and fixed-position genes characterize the SGA class of

GAs. When the defining length of a relationship between genes grows large compared

to the total length of the chromosome, the likelihood of disruption occurring during

crossover grows exponentially. Therefore, the SGA is best suited for evaluating and

processing only those relations that are defined over positions close to one another [9].

The family of LIGAs does not share this characteristic and as a result does not suffer

from this bottleneck.

3.3 Survey of Current LIGAs

Almost all of the LIGAs discussed are based upon the Schema Theorem

presented first by Holland in 1975 [6]. However, they only adequately address the

single population SGA problem proposed by Kargupta [9]. The Schema Theorem

simply states that "short, lower-order, above average schemata receive exponentially

increasing trials in subsequent generations" [6] and three of the four LIGAs discussed

follow this model explicitly. The other, the selfish gene algorithm [4, 5], follows the

model implicitly, which is made evident in its discussion. The combination of relation,

class, and sample spaces is partially handled by most LIGAs, but the complexity of this

"evolutionary concept" is not yet well understood. The concept is partially based upon

the meiosis and the production of gamete processes [10]. Therefore, until "we" can

adequately explain how these operations execute in "real-world" evolutionary processes,

21 This class of problems is characterized by having coding function combinations that have
misleading low-order building blocks which cause the GA to converge to sub-optimal points.

34

all attempts to model them in GAs will be only poor approximations of the complex

natural process.

3.3.1 Messy Genetic Algorithm (mGA)

No discussion of the LIGA family of GAs would be complete without discussing

the forerunner of all LIGAs: the messy GA (mGA). The mGA proposed by Goldberg et

al., in 1989, was a major paradigm shift for its time. The mGA was the first to suggest

moving from "neat coding and operators" to allowing variable-length strings that may be

under- or over-specified with respects to the problem being solved [1]. The original

mGA was designed to handle the "deception problem," but its usefulness is not limited

to this realm. It is at least as efficient and effective as the simple genetic algorithm on

both deceptive and non-deceptive problems in some test cases. Goldberg's originally

proposed mGA was fashioned from his view that nature's climb out of the primordium

occurred with genotypes that exhibit redundancy, over-specification, under-specification,

changing length, and changing structure [1]22.

3.3.1.1 Chromosome Representation

Goldberg developed the mGA chromosome to allow for a relaxation in the coding

of the gene by assigning each gene a "value," called an allele, and a "location," called a

locus (e.g. {(allele, locus)}). Then, he took no steps to ensure that any particular

chromosome contained a full complement of allele/loci pairs, nor to prevent redundant

pairs, in accordance with his view of evolution. This led to two closely related problems.

How to handle over-specified and under-specified genes within a chromosome. Over-

specification occurs when a chromosome contains two genes that have the same locus

value but differing allele values. The problem is: what phenotype should the

chromosome express when there are two competing gene alleles for a particular locus?

Goldberg's solution to over-specification was to simply use positional precedence

because of its simplicity. As the name suggests, positional precedence is based on a

left-to-right scan of the gene with a first-come-first-served attitude when constructing a

"complete" gene for a fitness evaluation. Figure 15 illustrates how Goldberg envisioned

the mGA's positional precedence operation23.

22 Appendix E.1 contains additional clarification of some mGA operations.
23 Theoritical uses of the positional precedence operator is discussed in Appendix E.1 a

35

Positional
Precedence^

1 (1,0) I (1,1) I (3,1) | (2,0) | 1 (1,0) I (2,0) | (3,1) |

Chromosome Used in Fitness
Evaluation Original Chromosome

' 1/

Figure 15: mGA Positional Precedence at Work

Under-specification is a much more difficult problem to overcome and is handled

in a different and not so simplistic fashion. Goldberg originally assumed that the fitness

function could be handled as a sum of non-overlapping subfunctions. This assumption

allowed the mGA to evaluate every member of a population and compare them based

on an "average" fitness [1]24. This initial simplifying assumption proved not very useful

nor scalable to "real-world" problems, and the handling of under-specified genes evolved

into the use of a competitive template to "fill in the gaps" of the partially specified

solutions. The competitive template method uses an a priori defined "locally" optimal

template to fill in the missing bits of the partial solution. The locally optimal template is

used to provide missing genes within the chromosome. This allows the fitness function

to evaluate a completely specified chromosome25.

3.3.1.2 mGA Algorithmic Phases

The mGA consists of three phases: partially enumerative initialization, primordial

phase, and juxtapositionalphase. In the partially enumerative initialization (PEI) phase,

at least one copy of each possible building blocks of a specified size is created. These

partial solutions make up the initial population26, in contrast to random initialization found

in most other forms of GAs. This phase is analogous to the predawn of life on earth

when the sea was considered a "primordial soup" as first suggested by Russian scientist

Alexander Oparin [67]. The primordial and juxtapositional phases can be thought of as

two phases of selection.

In the primordial phase, the proportion of good building blocks is enriched

through a number of generations undergoing reproduction without any other genetic

operations. The objective is to create an enriched population of building blocks whose

combination should create optimal or near optimal strings. Suboptimality of the final

24 Each chromosome was evaluated by all possible fitness subfunctions then divided by the
number of subfunctions to return an average fitness.
25 Refer to Appendix E.1b for an in depth discussion of the competitive template.
26 Appendix E.1c contains a complete description of PEI.

36

solution is possible, because the initial population instantiated by PEI does contain

suboptimal building blocks. In some sense, we can think of this phase as a "weeding-

out" of these suboptimal blocks. To meet this end goal, tournament selection is applied

to the PEI generated population [15]. Tournament selection27 is the only active operator

during the primordial phase. Then, as selection proceeds, the population size is

reduced by factor of two at regular intervals. This serves two purposes. First there is no

need to maintain the population size associated with PEI once the better of the building

blocks are chosen, and secondly the mGA reduces the population size in order for the

population to be effectively and efficiently processed by the juxtapositional phase.

The juxtapositional phase resembles the usual processing of a SGA except the

strings can vary in length. This phase proceeds with a fixed population size and the

invocation of reproduction, cut-and-splice operators28, and other genetic operators which

can be included29. Cut-and-splice was a novel contribution of the mGA to the realm of

GA knowledge, and it acts to recombine the enriched proportions of building blocks

passed on by the PEI and primordial phases. As long as the string lengths remain low,

the action of cut-and-splice is likely to be as non-disruptive as simple crossover [1].

A high-level example of a mGA coding is provided in Algorithm 1:

27 Tournament selection was used by Goldberg in his work, but any form of selection operator
can be subsituted.
28 Appendix E.1d discusses this operator in terms of one-point crossover.
29 In Goldberg's original study, he used reproduction and cut-and-splice, but he eluded to the
possibility of incorporating mutation.

37

Program ni<JA

Do /*oulcr loop*/

Evaluate Fitness of each Member or the Population
Do /*primordial phase*/

Sclection(Tou rnament)
Reproduction
If (appropriate number of gem-rations accomplished) Then

Reduce Population Size
lllllHIIBlllI^

} until the maximum number of Primordial Phase are
accomplished

Do /*juxtapositional phase*/

iSlllIH^
Cut..And_ Splice Operator
Other GA Operations
Evaluate Fitness of each Member of the Population
Selection! Tournament)

} until some stopping condition is met
Sa\e best solution as next kth-order iteration's template

} until problem domain's order of deception is accomplished
Save "best" solution found as finally output

Algorithm 1: mGA Pseudo-Code

3.4 Selfish Gene Genetic Algorithm (SG GA)

The SG GA proposed by Corno, Reorda and Squillero (1998) follows a

somewhat nontraditional view of evolution. A "traditional" GA follows the evolutionary

views proposed under Darwinism. Their common underlying assumption is the

existence of a population of individuals that strive for survival and reproduction [4]. The

basic unit of evolution in these traditional algorithms is the individual, and their goal is to

find an individual of maximal fitness [4]. On the other hand, the SG GA follows a

recently proposed view of evolution where the fundamental unit of natural selection is

the gene rather than the individual. The selfish gene theory of evolution, proposed by

Richard Dawkins in 1976, claims that whereas the individual eventually does not survive,

but the genome of the individual is able to replicate itself into subsequent generations

potentially indefinitely [4]. In the population, the important aspect is not the fitness of

38

each individual, since those individuals are mortal, (e.g., their "good" qualities are lost

with their deaths [4].) For instance, in the ideal case a child of a diploid organism

receives half of the genes from one parent and half from the other. Therefore, a

grandchild only represents a fourth of each grandparent's genes, and so on (see Figure

16).

Parent1

48 Genes

Child

Parent2

New
Mate

m I

New
Mate

24 24
48 Genes

(Reproduction) .

1/2 1/2

48 Genes

Grandchild

24 24
48 Genes

• (Reproduction) r

1/4 1/4 1/2

48 Genes

Great
Grandchi

 I
24 24

IH

48 Genes

■ M
1/81/8 1/4 1/2

48 Genes

Figure 16: Propagation of a Chromosome Fragment

Individuals, therefore, are viewed as fleeting in the sense that their "life" in

evolutionary terms is nearly spontaneous because the evolutionary process takes eons.

On the other hand, genes live forever in the sense that a fragment of a chromosome

survives the individual and is replicated in its offspring: the gene survives the death of

the individual. In the selfish gene concept of evolution, individual genes strive for

appearance in the genotype of the individuals, whereas the individual is nothing more

than a vehicle allowing the genes to reproduce. Due to the shuffling of genes that takes

place during sexual reproduction, "good" genes (i.e., good building blocks) are viewed

as those genes that, when combined with other genes, give higher reproduction

probabilities to the offspring [4]. For example, if a gene is able to produce a useful

characteristic, then the individual with that characteristic (gene) in their genome has a

higher probability of breeding. Thus, such genes have a higher probability to spread in

the gene pool and therefore receive greater representation in future generations30.

30 Appendix E.2 begins the additional coverage of the SG GA.

39

3.4.1 SG GA Chromosome Representation

Since the SG GA does not maintain an instantiated population of individuals, the

SG GA relies upon a virtual population. The virtual population is an abstract model

aimed at representing the gene pool concept defined by Dawkins. The gene pool is a

collection of all possible allele values for each locus position in the genome. As in the

mGA, each gene is given a value and a position.

Since individuals do not persist in the SG algorithm, and therefore "fitness" is not

associated with any particular set of genes, the SG algorithm models reproduction

through its effects on statistical parameters that model the virtual gene pool. The

statistical parameters model the virtual population at two levels. First, the success of a

particular allele is measured by the frequency with which it appears in the virtual

population. Since any locus can take-on any one of several alleles, the probability of

expression of each allele, independent of the alleles found in other loci, is stored as a

component of a marginal probability vector (MPV) for each locus (L), (i.e., the MPVU =

{ai, a2, a3, etc}). The marginal probability vector is a collection of frequencies for each

value an allele can assume. At the next level, the virtual population is statistically

characterized by the collection of marginal probability vectors (MPVtotai) for the various

loci. The collection is stored in a single array where the length of the array equates to

the number of loci and at each cell of the array there is the marginal probability vector

for that particular locus (i.e., MPVtotai = {MPVL1, MPvla, MPVL3, etc}). It is important to

note that the MPVtotai is not required to be square because each locus is allowed to have

its own allelic alphabet.

3.4.2 SG GA Algorithmic Phases

The SG GA follows two steps in its processing: 1) initialize gene pool and 2)

reproduction based on fitness and tournament selection. Initialization of the gene pool

is motivated by the principles outlined above in the discussion of the virtual population.

All possible genes are created and the marginal statistical probability vectors are

calculated for the complete virtual gene pool31. The virtual gene pool starts with all

alleles for each locus having an equal probability of expression. The probability of

expression for each allele evolves through the process of reproduction.

Appendix E.2a investigates the growth rate of the virtual gene pool as the length of a
chromosome increases.

40

The process of reproduction is discussed as three phases: generation of

individuals, tournament selection, and replication. An individual is created/formed only

when needed for competing in a tournament, and then it is immediately discarded [4].

Two individuals are created from the virtual gene pool. For each locus in each

chromosome, the allele chosen for the representation in the individual is either selected

by mutation or based on the MPV. If mutation is warranted, a random allele chosen

uniformly from the locus' allelic alphabet set is used. Mutation is modeled by random

occurrence with a very low probability (Pm)32-

If random _number(OA) < l'm then chose

random allele

Equation 16: Selfish Gene Model of Mutation

Next, these two individuals undergo tournament selection based upon their

phenotypical characteristics, and the one with the higher fitness is considered the

winner. Finally, all alleles appearing in the winning individual/chromosome slightly

increase their probability of expression in their respective loci in the virtual population;

the losing chromosome's alleles are proportionally decreased in the corresponding loci.

The allele frequencies are increased/decreased by some predetermined constant (e)33.

This form of replication is not considered asexual reproduction because of

reshuffling the genes creates a blind cooperation between genes in the winning

"individual." The rewarded alleles are selected together with other alleles, in other loci,

different from the ones appearing in the former winner [5], therefore this new winner is

not an identical copy of the former winner as would be the case in asexual reproduction.

This process continues until some stopping condition is reached. Corno's initial

SG GA stopped when the genetic algorithm reached a steady state. The SG GA

defines a steady state exist, for each locus I, of an allele (a,v) whose probability of

expression is over a given threshold pt
34 [4, 5]. Mathematically, the steady state is

defined as:

V7 : max, (,«■■) > p.

Equation 17: SG Steady State

32 Appendix E.2b discusses SG GA mutation in terms of convergence rate.
33 Appendix E.2c analyzes this epsilon feedback loop.
34 pt values are usually around 0.95

41

When this condition is met, all individuals modeled by the virtual population are very

similar. In fact, if not for random mutation they would be identical. Therefore, the virtual

population is not likely to evolve any more [4].

A high-level example of a SG GA code is provided in Algorithm 2:

Program SG

initialization
lll^

Select individuals
Determine fitness of each individual
If (fitness of individual]) < (fitness of individual)

Reward allelcs (individual^
Penalize alleles (individual;)

Reward allelcs {individual})
Penalize alieles (individual0

Discard individuals
} while (stopping condition is not reached)

Algorithm 2: SG GA Psuedo-Code

3.5 Gene Expression Messy Genetic Algorithm (GEMGA)

GEMGA35 is another compelling investigation into the linkages between genes as

proposed by Kargupta in 1996. GEMGA's foundation is rooted in an alternate

perspective of blackbox optimization (BBO) in terms of relations, classes, and partial

ordering which Kargupta coins as SEARCH (Search Envisioned As Relation and Class

Hierarchizing) [9,10, 11, 45]. SEARCH is motivated by the observation that searching

for optimal solutions in BBO is essentially an inductive process and in absence of any

relation among the members of the search space, induction is no better than

enumeration [11]. SEARCH (a compete description can be found in [9]) decomposes

BBO into three spaces: 1) relation, 2) class, and 3) sample space [9, 11]. Relations

divide the sample space into different classes. The sample space is the area we are

searching, and the classes delineated by the relations can be viewed as a pruning

mechanism. If the algorithm divides the sample space into relations, we can order the

classes based upon "better" relations and organize the members of each class based

35 Appendix E.3 begins the additional discussion of GEMGA.

42

upon their "goodness contribution" to the relation. In this manner, we have effectively

pruned the search space by discounting the "lesser" classes because they represent

worse relations in the sample space. There are five major components to SEARCH

(see Figure 17), and GEMGA is a distributed implementation of each of these steps.

• Classification of the search space using relation
• Sampling
• Evaluation, ordering, and selection of better classes
• Evaluation, ordering, and selection of better relations
• Resolution

Figure 17: Steps of SEARCH

3.5.1 Chromosome Representation

According to the originally proposed definition of "messy" by Goldberg, GEMGA

is not messy at all. GEMGA does not allow under- or over-specification. Instead, it

follows the more traditional views of a fixed length fully specified chromosome. The

chromosome representation found in GEMGA is fixed length string where each member

(gene) is a complex data type similar to the one presented in the mGA. Each gene

representation in GEMGA contains three values: the locus, allele, and weight [9]36.

Besides genes, the chromosome also contains a dynamic list of lists called the

linkage set [10]. The linkage set replaced the gene characteristic of the linkage set

found in earlier versions of GEMGA. The purpose of the linkage set is to define a set of

genes that are related for each locus. The linkage set is actually comprised of a list of

weighted lists, called locuslist. Each locuslist contains three related factors: the weight,

goodness, and trials. The weight measures the number of times that the genes in the

locuslist are found to be related in the population, whereas, the goodness relates how

strong the linkage of the genes are in terms of their contribution to the overall fitness of

the chromosome. Finally, the trial field indicates the number of times this linkage set

has been tried [10]. The whole gene representation and linkage set collogue defines the

relation space of the GEMGA population. (See Figure 18)

36 Appendix E.3a explains each of these gene characteristics.

43

Gene. Gene, :?;SIS:::::K : \\ $ $$8$^$SMi^ Genen Linkage Set, Linkage Set n

Locus Locus Locus Locus Locus List .ocus List .ocus List
Value Value Value Value weight weight weight

Capacity Capacity Capacity Capacity goodness goodness goodness
trials trials trials

A Static Size A Dynamically increasinc] in Size k.

° Figure 18: GEMGA Chromosome Representation

3.5.2 Algorithmic Phases

The GEMGA algorithm has three phases: Initialization, Transcription stage

(formerly Primordial Phase [9,11, and 45]), and RecombinationExpression stage

(formerly Juxtapositional Phase [9, 11, and 45]) [10]. Note that in the GEMGA

documentation, Kargupta specifies that GEMGA only has two stages, Transcription, and

RecombinationExpression. He assumes that the algorithm's population has already

been initialized [10]. During initialization, GEMGA creates the initial random population

of chromosomes under the requirement that at least 1 instance of the optimal order-k

class must be in the population37. In order for the population to contain at least a single

A| members

where c is some constant that depends upon the variation of fitness values of the

members of schema [10], and IAI is the cardinality of the alphabet. Since in practice the

order of delineability is unknown, Kargupta suggests that the choice of a population's

size determines what order-k relationship GEMGA should process [10]. Therefore, after

some algebraic manipulation, he presents the following equation: 38

log
Üi

Jt = i
Jog A

Equation 18: GEMGA Population Requirement

During the Transcription stage, the transcription operator is applied

deterministically for all £ genes in every chromosome of the population for £ generations

[10]. The transcription operator applies a random subset of all alphabet transformations

Order-k represents the complexity of the linkage GEMGA is investigating.
Appendix E.3b explores the population requirements encouraged by this equation.

44

to every gene one at a time39. The value of the gene is flipped to a different element of

the allelic alphabet and the change in the fitness value is noted. For example, if a

chromosome of length 4 were encoded using a binary representation, then in the first

generation the first bit would be flipped for every member of the population. Next, each

chromosome would undergo a fitness evaluation to determine if the particular bit flip

improved the overall fitness of the chromosome.

If the chromosome's fitness improves as a result of one of these changes, then

the original chromosome is not likely to be a member of the optimal schema defined

over a partition that subsumes the gene under observation. On the other hand, if the

fitness worsens, then perhaps the gene belongs to a good class - i.e., it has strong

linkage40.

Once the chromosome's fitness is evaluated, the capacity of that gene is set to

either 1 (the gene has a capacity to change) or 0 (the gene has no capacity to change).

The choice depends on whether the mutation of the allele value had a positive or

negative effect of the chromosome's overall fitness.

Once all the alleles have been examined, those genes whose capacity changed

to zero are collected and stored in the first element of the linkage set for each

chromosome. These genes are called the initial linkage set. The transcription

operator only changes each gene's capacity and initiates the formation of the

chromosome's linkage sets. At the end of this stage, the chromosome has its initial

fitness and configuration restored [10].

Once the transcription phase is complete, the RecombinationExpression phase

begins with the "modified" population. The RecombinationExpression stage is actually

two separate subphases: PreRecombinationExpression and RecombinationExpression.

The RecombinationExpression phase continually applies these two subphase until some

predefined stopping condition is met41. A high-level example of a GEMGA genetic

algorithm coding is provided in Algorithm 3:

39 In the case of a small allelic alphabet, it is assumed GEMGA progresses through all possible
allelic values.
40 The scenario is for a minimization problem -- reverse for a maximizing optimization problem.

45

Program GKMüA

Initiali/alion /* Initialize Random Population */

Do /* Find Better Relations */

IIIBIH^
Apply Transcription Operator

} Until (j == problem - length;
for (i=0. i <= NumberoftriaK, i++'i /" Define Relations Between Genes */

Apply PreRecombinationExpresMon Operator
Do /* Selection and Crossover */

IB
Apply GLMGA Recombination

} Until {some stopping condition has not tven meet)

Algorithm 3: GEMGA Pseudo-Code

3.6 Linkage Learning Genetic Algorithm (LLGA)

The LLGA is another attempt by Goldberg and his students to find/create a

competent GA. Goldberg defines a competent GA as one that "can solve problems of

bounded difficulty quickly, reliably, and accurately [8]." The LLGA was first proposed as

a new linkage-investigating algorithm by Harik in 1996. Harik argues that other

implementations of GAs do not take explicit advantage of "tight linkages" early enough

in their algorithmic processing. If they did (as does the LLGA), then they would be able

to solve "difficult problems [7]." The LLGA takes advantage of tight linkages between

genes by using a new two-point crossover operator and a different chromosome

representation.

In order to understand the LLGA, we must comprehend Harik's etal.'s new

definition of building block linkage that only applies to this genetic algorithm. According

to the LLGA research, building block linkage is defined as the probability'that building

blocks are conserved under whichever crossover operator is used [1]. This definition

contrasts with the popular view of "building block linkage" present by Whitley [6] and

earlier Goldberg papers [1, 2]. Whitley and Goldberg equate linkage with physical

adjacency on a string as measured by defining length, and defining length is based on

the distance between the first and last bits in the schema [6].

41 Appendix E.3c defines the RecombinationExpression phase.

46

Normally, the GA community considers building block linkage to mean the

definition supplied by Whitely (and others), and we will refer to that definition as the

classical building block linkage definition while discussing the LLGA to avoid confusion.

Harik, on the other hand, argues that although this definition is appropriate for one-point

crossover, it is imprecise for other crossover operators such as uniform and two-point

crossover [17]. His new crossover operator is a variant of two-point crossover, and

thus, he uses two-point crossover as a means to explain his building block linkage

definition.

We can picture two-point crossover operator as treating the chromosome as a

string of beads connected in a circular list. If we imagine a fixed circumference

necklace as the number of beads within the necklace grows to infinity, the thickness of

each individual bead drops to zero [7, 17]. Consequently, we can view the circle of

beads as having a circumference equal to one. Harik defines a k-order building block

as having k points on this circle, and he labels the successive distances between these

k-points as y-\ through yn. Therefore, a building block is preserved under two-point

crossover precisely when the injected genetic material falls within one of these gaps

[17]. He suggests an equation to calculate his new building block linkage as "the

probability of both crossover points falling within the same gap equals the sum of the

squares of the gap lengths [17]." (See Equation 19)

Equation 19 : LLGA Building Block Linkage

Figure 19 graphically shows how Harik interprets building block linkage [46].

47

Gene 3

Gap y

Gene 2

Gapy,

Gene 1

linkage = y,2 + y2
2 + y3

2

yi + y2 + y3 =1

Figure 19: Harik's Linkage Definition

3.6.1 LLGA Chromosome Representation

In Harik's version of the chromosome, each gene has a value and a position

(allele/locus pair), but the chromosome is not allowed to demonstrate under-

specification as in the mGA. Over-specification, on the other hand, is always present.

Each chromosome is completely over-specified42. The allele chosen for expression is

based upon positional precedence. In the original usage, the "positional precedence"

operator (refer to Goldberg's mGA) was defined as meaning that a "complete"

chromosome is constructed by a simple left-to-right scan of the linear chromosome and

the first allele value for a particular loci encountered is expressed during the fitness

evaluation. (See Figure 15.)

In contrast, Harik's views the chromosome as a circular list of genes. (See

Figure 20.) Somewhere along this circular list is an interpretation point. The

interpretation point serves as the starting location from which the fitness evaluation

function begins to interpret the genes of the chromosome in a clockwise manner

recording the first occurrence of each gene as the expressed characteristic. Starting

from the interpretation point, Harik's version of positional precedence operator functions

exactly the same as Goldberg's originally envisioned positional precedence operator.

The difference is that the location of an individual's interpretation point changes during

the LLGA's processing in order to allow for other allelic expressions. In this manner of

42 Harik's work assumes a binary encoding allelic alphabet, but if we allowed for some
other alphabet, we are required to represent each allele value in the chromosome for
each locus

48

encoding and interpretation, diversity is never lost because the chromosome contains

every allelic value.

Furthermore, within the chromosome, Harik includes non-coding material called

introns. The introns give no contribution towards the fitness of an individual and are not

included in the chromosome's expression, but serve to facilitate the propagation of

building blocks and the formation of linkage43.

Interpretation Point

Positional
Precedence

(1.1) (2,1

Chromosome Used in
Fitness Evaluation

Chromosome Used in
Fitness Evaluation

Figure 20: Visualization of a Chromosome

3.5.2 LLGA Algorithmic Phases

The LLGA executes in a similar fashion as the SGA44. Specifically, the

population is initialized, and then selection and crossover are applied generation after

generation until some stopping condition is met. Any form of selection may be

employed, but tournament selection with its low rate of convergence due to its minimal

selective pressure allows the LLGA more "time" to explore/uncover linkages [7]. Harik

coins a new crossover operator for the LLGA, which he calls the exchange operator [7,

8]. This operator requires two chromosomes selected from the population for

reproduction. One of the chromosomes is designated the donor and the other the

recipient. The operator selects a random segment of genetic material from the donor

and grafts it into the recipient at a random location. Since both chromosomes are

assumed to have an implicit orientation, the grafted alleles/loci are in the same

44
The function and number of introns necessary is discussed in Appendix E.4b
Additional discussion of the LLGA begins in Appendix E.4

49

orientation as they were before this procedure. Now, the recipient is considered

"overfull" because it has duplicate copies of various allele/locus pairs.

The duplicate introns/exons pairs are deleted according to the following protocol.

First, the interpretation point is transferred to the location of the first gene grafted into

the recipient. Then, starting at the new interpretation point and going in a clockwise

manner the genes are recorded. When a duplicate gene is found before completing the

circle, it is deleted. In this manner, the genes transferred from the donor remain intact in

the recipient45.

The genes in the recipient are brought closer together by two subtle mechanisms

operating within the exchange operator. First, the genes that survived crossover in the

recipient are brought closer together by the deletion process. Duplicate introns and

exons are pruned from the original chromosome. This results in those remaining genes

having a smaller/tighter defining length (see Figure 21) as defined by Whitley and a

lower building block linkage probability as defined by Harik (e.g., classical 5 -> 3, new 2

-> Ofrom Figure 21).

Chromosome Chromosome
Prior to Crossover Aite^r Crossover

'M
—
 ■

 -M (6,1))/■ N /~' ~~*-

ng
 B

lo
ck

in

in
g

3t

h
=

3

(
 b

)

■i? J= ((2,0) >,.. ..y{ (1,0) i f (3.') .
5 en /mamSw'' ^■■Ä!». *. *> . . '-o a> c .'" \ ...'■ v.._../"

Y0 r)
+ 1 (4.0) :■ -> 1= Q 2 (f.'.1) I U4'jU

tr
ild

tn
"

in
in

g
 "m ^n .1) i ((6.0

I (4.0) .» I t (2,1) ;■
\v

~M) 1 ((3.1> j 1 (s,0) 1

-("(4.0» '■ ((2,1))

rz - .' \ 1 /"" ""N - V /* /' -\ ''
((3,i) :>• --{13.0) - I (5,1.) y~ -{(3,0) ;

v .'I. (5.0) S.._..< \ V_..^i (5,0) >.._...''
■ v_^y ^ /

Figure 21: Deletion Process Tightening of Building Blocks

The second mechanism radically changes the defining length of a "good"

building block using either definition. For instance, suppose we have the following

building block comprised of (1,1), (2,0), and (4,1) with a building block linkage of

(classical = 12) and (new = 10). Prior to crossover the chromosome resembles Figure

22 Step 1. During crossover, the donor injects the following genetic material {(9,0),

(1,0), (5,0), (4,1)} in front of the first element of the building block in question, and this

new material contains an element of the building block {gene (4,1)} (Figure 22 Step 2).

45 Appendix E.4a contains a figure which provides a complete overview of this discussion.

50

Therefore, the build block.s defining length is shortened/tightened: classical = 3 and new

= 0. (See Figure 22 Step 3.)

Interpellation
Point

Step 1

Classical BB Length = 12
Harik BB Length = 10

Step 2
Grafting Point

/' V -
({5.01)

(fi.oi)

iJBsiir
To

c
Material for

Transfer

Recepie

Step 3
Crossover Operations

New Interpertation
Point

xjSi Chromosome
/'' /. Gene Total = 24
I (9,0)) Exons = 8

Classical BB Length = 3
Harik BB Length = 0

Figure 22: Crossover Operation Tightening of Building Blocks

Finally, the exchange operation is directional in that it has different effects on the

donor and recipient chromosomes [7]. Harik suggests that this asymmetry can be

remedied by having both individuals selected from the population play alternating roles

and produce two offspring.

51

A high-level example of an LLGA algorithm is provided in the following figure:

Program LLGA

^B^^Ä^^^^^^H^^^^^^B
Initialization
Fitness Kvnlualion

HPHIIHHHHHIBH
|||i|M|||||||||^|||||||^|||||H^|ll^||||HHli^il

Tournament Selection /* selection */
Exchange Operation /* crossover */
Fitness Evaluation

} Until (stopping condition is not reached)

^^^^^^^^^B^^^^^^^^fc
Algorithm 4: LLGA Pseudo-Code

3.7 Comparison

In this section, we compare the LIGAs based on initial population explosion

problem, algorithmic complexity, and the order of linkage to which the algorithm could

be successfully applied. This serves as the basis towards justifying why we did not

implement three of the four LIGAs discussed. Furthermore, I point out some "pitfalls" of

the algorithms that must be considered before they are applied to a real-world problem.

3.7.1 Initial Population Explosion Problem

We have defined the dramatic rate at which the initial population of any of these

LIGAs increases as the "initial population explosion problem." The initial population

explosion problem affects the usefulness of the LIGA family in two aspects. The first

aspect is its sheer size and the subsequent affect on the memory. For example, in

order to investigate a 3rd-order linkage problem involving a 240 bit binary-chromosome

ignoring chromosome representation overhead (i.e. the overhead of record structures,

arrays, link list, etc.):

• The mGA requires 18,202,240 members in the initial population each, 240 bits long
(see Equation 41). Since each gene is actually an allele/locus pair and the allele can
be represented in 1 bit and the locus in 8, each gene requires 9 bits of storage
space. Therefore, the population requires 39,316,838,400 bits (approximately 4.5
GBytes) of storage space during PEL

• The SG algorithm only requires the number of allele values multiplied by the number
of loci possible. For our example, the initial gene pool would have 480 genes (240
loci X 2 allele values). Each gene would be represented by 9 bits, assuming 1 bit for
the allele and 8 bits for the locus, for a total of 4,320 bits.

• Equation 18 implies that GEMGA requires the initial population to be 8 times the
variation in fitness. If the variation of fitness amongst the initial population was 60,

52

then the initial population size would require 480 members. Each member has 240
genes requiring 9 bits for the allele/locus and 8 bits to represent the capacity for a
total of 1,958,400 bits (1.96 Mbits). This figure does not include the number of bits
required to represent the linkage set for each chromosome since it is dynamically
growing.

• The LLGA needs an exponentially large number of introns coded into each
chromosome as well as all allele complements for each locus to be present. Based
on Equation 43 and Figure 76, we would need 4,560 introns and 480 exons in each
chromosome. Since the LLGA makes no assumptions about the number of
individuals required within the initial population, we have assumed 100 member
based upon Harik's examples [7, 8,17]. Including the introns, the space required is
9 bits per gene (same locus/allele representation) for 4,640 genes times 100
members which equals 4,176,000 bits (4.2 Mbits).

Even without the overhead of each particular LIGA's chromosome representation

structure, the amount of memory required to contain the initial population is a severe

requirement on the amount of available core memory. By accessing main memory to

access the initial population, the processor's instruction execution rate is slowed down

by disk access dramatically increasing the execution time of the algorithm!

The second aspect of the initial population explosion problem is the time spent

conducting the initial fitness function evaluations. In this case, the fitness function takes

1.0911946 seconds to complete. Therefore:

• Since the mGA requires a fitness evaluation for each member of its initial population:
18,202,240 members X 1.09119 seconds = 19,862,102.27 seconds or 5,517.25
hours (229 days).

• Since the SG algorithm does not require an initial fitness for the gene pool because
of the way it models the population, this aspect of the problem does not affect it.

• The GEMGA requires an initial fitness evaluation and creation of the linkages before
it enters the main selection/reproduction phase of the algorithm: (480 members X
1.09119 seconds) + (480 members X 240 bits X 1.09119 seconds) = 126,229
seconds or 35.1 hours.

• Since the LLGA requires a fitness evaluation for each member of its population: 100
members X 1.09119 seconds = 109.119 seconds or 0.3 hours.

The advantage of not implicitly representing the population helps the SG GA to begin

manipulating its "population" long before the other LIGAs have entered their main

selection/reproduction phases.

One important consideration must be pointed out about the mGA. Whereas

each of the other GAs requiring initial fitness evaluations use completely specified

chromosomes, the mGA can have under/over-specified chromosomes. The over-

461.09119 represents the average time spent conducting a CHARMm evaluation using 35,100
trials.

53

specified chromosomes create no problems, but the under-specified ones need the

competitive template in order for their fitness to be computed. The template has the

effect of driving the under-specified chromosomes towards the phenotype represented

by the template. If the global optimum is unknown and, therefore, not used in the

construction of the template, then the template may drive the mGA population toward a

suboptimal area of the search space. Therefore, we suggest that a random template be

created each time an under-specified chromosome needs evaluation. By following this

method, we would still reward the under-specified chromosome whose fitness is

improved by the template and there won't be the tendency to drive the mGA's population

toward any "predetermined" template/search space location. On the other hand,

creating a "new" template for each under-specified chromosome incurs substantial

overhead in large populations.

3.7.2 Algorithmic Complexity

The complexity of the GA is usually much less than the complexity of the fitness

function in "real-world" applications. It is the fitness function's algorithm that typically

drives the overall complexity of a GA once it is applied to a particular application. By

comparing the complexity of the LIGA family of GAs, we can estimate a lower

algorithmic complexity bound. If we combine this lower bound with the fitness function's

algorithmic complexity, then we have a good range on the order of processing time we

can expect from the GA. (i.e., The area between upper and lower bounds of a Big 0

complexity curve completely bound the expected runtime of the algorithm.)

Table 8 illustrates the complexity for each of the LIGAs covered in this paper.

54

Algorithm Authors Complexity Key
Messy GA Goldberg G(lk) Where 1 is the number of loci and k

is the size of the building block [2]
Selfish Gene Corno 0(1 x cardinality(A)) Where 1 is number of loci and A is

the alphabet [4].
Linkage
Learning GA

Harik 0(1 x sqrt(l) x ln(l)) Where 1 is the length of the
chromosome [17].
Where I is number of loci, A is the
alphabet, and k is the size of the
building block [10]

Gene ! Kargupta
Expression GA i

!

G(l x cardinality(A)k)

Table 8: Algorithmic Complexity

When plotted (see Figure 23), the mGA's complexity starts higher and grows at

the worst rate. On the other end of the scale, the SG GA and GEMGA algorithms'

complexity curves barely grow verses increasingly larger chromosome length. The

LLGA is in the top half of the graph, and its growth rate is worse than either the SG GA

or GEMGA.

It is important to note that the SG GA does not explicitly take into account the

order of linkage we are trying to investigate. Instead, the SG GA iteratively evaluates

the genes in the virtual gene pool uncovering higher order linkages in descending order

of importance. This constraint hampers our ability to execute the SG GA for some fixed

number of generations because there is no way to stipulate when the SG GA has

uncovered the degree of linkage within the particular problem.

55

Complexity Upper Bound

1000000000

100000000

10000000

1000000

X o
a.
E o o

100000

10000

1000

100

10

-♦-mGAk = 3

-*-SGk = ?

-*~GEMGAk = 3

•■■*•■ LLGAk = ?

100 200 300 400

Number of Loci

500 600

47 Figure 23: LIGA Complexity Curves

3.7.3 Linkage Order Ability

Finally, if we look at the order of linkage this family of GAs can investigate, we

find that it is based upon the other two factors we have discussed: the initial population

explosion and algorithmic complexity. For the mGA and GEMGA, the initial population

fitness function evaluation process is the driving limitation. Neither of these two LIGAs

are efficient for investigating 3rd-order linkages or higher because of the initial population

fitness function evaluation execution time, 229 and =1.5 days respectively for the

examples in the previous section.

The linkage uncovered by the SG GA is strongly dependent on the number of

generations spent in replication and the size of epsilon chosen to reduce/increase the

' The y-axis is logarithmic, I is the string length, k equals 3, and A is a binary alphabet.

56

allele frequency. The epsilon value drives the convergence of this algorithm, and Corno

et a/only suggestion for choosing a good epsilon48 is experimentation [4, 5]. Therefore,

we must continually execute the SG GA with smaller and smaller epsilons until the GA

consistently finds the linkage we desire using a predetermined number of generations.

If the number of generations changes, there is no guarantee the "good" epsilon value

continues to perform as anticipated. Finally, although the time spent in initially

evaluating the fitness of the initial population in the LLGA is a small deterrent for its use,

the real hindrance is the vast number of introns requiring encoding within the

chromosome. Harik has suggested compression methods for reducing the memory

requirements of the LLGA chromosome, but for "interesting" problems this compression

many not save enough memory to be fruitful (remember the example required 4,560

introns).

It is important to note that the success of GEMGA is based on two

considerations that have so far not fit in this discussion. The first is the c-value. The c-

value represents the variation of fitness amongst the individuals of the population, but

our general impression is that the c-value is problem-domain-based, and therefore

search-space-based. Since the initial population is randomly picked from the search

space, the c-value is unknown prior to the complete initialization of the population, but

the "c" value impacts the size of the population we need to combat a particular order-k

deception (see Figure 74). This leads us into a "which came first the chicken or the

egcf situation. We can increase the size of the initial population in order to decrease

"c," but when we do this, the variance amongst the population's fitness decreases and

requirement for increasing population size disappears. But, by decreasing the variance

amongst the initial population, we are restricting the subspace GEMGA searches.

Furthermore, when a population is comprised of nearly identical individuals, any GA

quickly converges to the "optimal" value represented within the bound search area. This

leads to preconvergence. The "c" value also impacts the amount of time the algorithm

remains in the Transcription phase because there are more members of the population

to evaluate. The other algorithmic consideration is that GEMGA only calculates the

linkage sets once. Most of the interesting real-world problems do not conform to this

static linkage concept, but they demonstrate dynamic linkage characteristics. (I.e.,

dynamic linkages change/mutate over the evolutionary process.) For instance, there

48 epsilon is problem-domain-dependent

57

may be a 3rd-order linkage within a chromosome through out the evolutionary process of

an organism, but as successive generations are evolved and die-off, this 3rd-order

linkage may involve different genes.

3.7 Summary

All LIGAs are plagued by three problems: initial population explosion, algorithmic

complexity, and low k-order of linkage investigation ability. How we incorporate problem

domain knowledge into our LIGA greatly impacts the success of any search

investigation. Any genetic algorithm that ignores the linkages between genes also

ignores the evolutionary processes conceptualized in field of genetic algorithms. Only

by modeling as many of the possible evolutionary processes as possible within our GA

family of algorithms are we able to solve complex and interesting real-world problems.

But, as this chapter has pointed out, the more we try to model, the more complex the

process becomes. Currently, our best hope for solving interesting problems may lie with

the LLGA or the SG GA with their small initial population and algorithmic complexity.

Table 9 summarizes the characteristics of each algorithm discussed.

Algorithm Chromosome Mutation Crossover Selection
mGA Variable length Random mutations

allowed
One-point Traditionally,

tournament
selection.

SGGA None None None Random
construction of
binary
tournament
between
individuals
drawn randomly
from the virtual
gene pool

GEMGA Fully-specified and
dynamically growing

None Bit masking based
upon the dominate
donor

Random.

LLGA Over-specified and
includes introns

Implicit by re-
orienting the

Two-point Traditionally,
tournament

interpretation point selection.

Table 9: Algorithm Characterisitcs Summerized

Table 10 indicates some problem domains that these algorithms have been

successfully applied towards (* indicates NP-complete problem). Chapter 4 discusses

our integration of the LLGA with the Protein Structure Prediction (PSP) problem domain.

58

We decided not to integrate the SG GA with the PSP problem because of the inability to

determine the order of linkage the algorithm will/did uncover and the required tuning of

the epsilon value.

Problem Domain MGA SG GA GEMGA LLGA
0/1 Knapsack Problem* X
0/1 Multiple Knapsack Problem* X
The Sphere Model X
Griewank's Function X
Shekel's Foxholes X
Michalewicz's Function X
Langerman's Function X
Order-X Trap Function X

(order 3)
X

(order 5)
X

(order 4)
One-Max Problem X X
Muhlenbein Function X
Rosenbrock's Saddle X
Traveling Salesman Problem X
PSP/PFP X X

Table 10: Successful LIGA Aplications

59

4.0 Genetic Algorithm (GA) Design and Implementation

4.1 Introduction

Previous research at AFIT resulted in a number of parallel and serial genetic

algorithm implementations and evaluation functions for several domains [14,15,18, 37,

52, 66, 73]. Collectively, these are known as the AFIT Genetic Computation Toolkit

(AGCT). The current state of the AGCT toolkit is in Figure 24. The contributions of this

research to the toolkit are marked by (Deerman).

The purpose of this chapter is document the design decisions, implementation

details, and interface requirements of the LLGA/CHARMm integration. A recurring

situation throughout this research has been the restricted amount of prior design and

implementation documentation details. Therefore, we have taken it upon ourselves to

explain the in's and out's of the CHARMm energy model as implemented by AFIT, the

redesign/integration of the LLGA to incorporate the PSP problem, and the integration of

AFIT's CHARMm code with Ramachandran constraints as developed in Chapter 2. Our

intent is to provide complete documentation relating to the design and implementation.

Section 4.2 documents the CHARMm energy model implementation developed by

Brinkman [18] and refined by Gates [15]. Section 4.3 rationalizes our redesign,

implementation, and integration of the LLGA, and finally, Section 4.4 provides our

Ramachandran constrained CHARMm energy model. Where appropriate, design

alternatives are indicated.

60

Figure 24: AGCT Genetic Algorithm Toolkit

4.2 CHARMm Implementation Design

The CHARMm code developed at AFIT follows the Structured Analysis and

Design paradigm of software development [70]. This paradigm takes a top-down

approach for partitioning the "problem" into subproblems which can be easily mapped to

61

specific implementable modules. Discussed separately in this section is the how to's of

integration and the rough control flowlor the implemented energy model.

4.2.1 Integrating CHARMm

In order to invoke the CHARMm energy model correctly, the GA initially calls

molecule(int length) within molecule.c. The parameter "length" represents the number of

characters that comprises the chromosome. From this module, the parameter file, the

z-matrix file, and the RTF file are read and the CHARMm model is initialized. Once

initialized, the GA calls charmm_eval(string chromosome, int length) which returns the

calculated energy for the particular chromosome as a "C" double. charmm_eval is

located in energy.c.

Another interface to AFIT's model is domain_output(.rtriwg chromosome, int length)

located in charmm.sga.out.c. This module calculates the energy just as charmm_eval;

furthermore it produces an output file call eval.bst which contains a term-by-term

breakdown of the energy calculation and the value of each independent dihedral angle.

This module is employed for displaying the energy terms and angles for a single

chromosome/protein.

4.2.2 Design Implementation

As presented in Error! Reference source not found., when a call to charmm_eval

commences, the chromosome is initially decoded from its binary representation to its

dihedral angles. Each dihedral angle is assumed to represent a particular radian value

within the molecule, and each angle is specified by 10 binary digits allowing for the

encoding of 1,024 different radian values per dihedral angle. For example, [Met]-

Enkephalin is represented by the amino acids Tyrosine-Glycine-Glycine-Phenylalanine-

Methionine, and it has 24 dihedral angles. Between each amino acid there are three or

more dihedral angles depending on whether a side chain corresponds to the particular
■ .49 ammo acid .

49 The tyrosine has 3 side chains, phenylalanine has 2 side chains, and methionine has 4 side
chains. See FIGURE

62

charmm_eval
{energy.c}

Decoding GA chromosome
into

dihedral angles
Binary => Integers

Lamarckian
Replacement

charmm_eval
{energy.c}

Figure 25: CHARMm Source Code Control Flow

Thus, the GA chromosome is 240 binary values (i.e., 24 ten bit binary numbers). The

GA chromosome represents these dihedral angles in accordance with the z-matrix input

file. The z-matrix file is a sequential listing of all atoms present in the molecule. See

Figure 26.

atom bond length flag bond angle flag dihedral usage flag atomy atomk atomi charge

Figure 26: Z-matrix Format

The atom field represents the atom in the protein from which the bond length,

bond angle, and dihedral fields are calculated. Therefore, the bond length is the

distance between atom and atorrij. The bond angle is a radian measurement of the

angle formed by the atom, atorrij, and atomk. The dihedral is the torsion angle in radians

of the middle bond formed by the atom, atorrij, atomk, and atorri|. But the key to the z-

matrix file is the usage flag. This flag specifies whether dihedral angle is dependent

and independent. If the usage flag is set to 1, the angle formed by atom, atom,, atomk,

and atomi represent an independent dihedral angle that is the principle dihedral angle

63

used in the AFIT CHARMm energy calculations. If the usage flag is set to 2, indicating

a dependent dihedral angle, or 0, indicating that this dihedral is not used in the energy

calculation, then it is not represented within the GA chromosome.

Figure 32 is a representation of [Met]-Enkephalin corresponding to the z-matrix

filed named nayeem.z. This z-matrix file is in the "correct" configuration for the AFIT

CHARMm energy model. The atoms as numbered in Figure 32 correspond to the

"atom's", atomj, atomk, and atomi in nayeem.z. If this z-matrix file is used with the

corresponding parameter file (PARM.PRM) and topology file (NAYEEM.RTF) located in

-genetic/inputfiles, then the associated input energy calculated by AFIT's model matches

Table 11. The dihedral angles for the [Met]-Enkephalin molecule depicted in Figure 32

that energies are given by Table 11 are in Table 14.

TERM ENERGY
Fixed bond energy 12.380356
Dependent bond energy 0.000000
Independent bond energy 0.000000
BOND ENERGY 12.380356
Fixed angle energy 6.189469
Dependent angle energy 0.000000
Independent angle energy 0.000000
ANGLE ENERGY 6.189469
Fixed dihedral energy 0.000160

5.415865 Dependent dihedral energy
Independent dihedral energy 2.787972
DIHEDRAL ENERGY 8.203997
Lennard-Jones energy -18.802334
1-4 L-J interaction energy 3.163984
LENNARD-JONES ENERGY -15.6383349
Electrostatic energy -88.855370
1-4 electrostatic energy 48.752795
ELECTROSTATIC ENERGY -40.102574
NON-BONDED ENERGY -55.740923
TOTAL ENERGY -28.967101

Table 11: Correct Energy Values Associated with the Correct Z-Matrix File

The translation between the z-matrix file layout to the GA chromosome is

esoteric and solely dependent upon the ordering of the principle/independent dihedral

angles as defined by the z-matrix file. Table 12 depicts z-matrix to GA chromosome

corresponds to the nayeem.z file layout.

64

m
3

o
CO
CM

m 3
O
CM
CM

■ O
T—
tM

9"
O
o
C\J

Ü
o
en

■1 CM IP
o
00

2
o

SB
.c CM

Si
o
CO

® £
o

ISIl CM o

tSi
£

o
CO

mm

o
CM

n s o

CD
fr

o
o

<D
* o

CT>

US
IB

s O
CO

^ O

IB;
iQi o

CD

m
CD

s o

lo- iH o

in e o
CO

3 o

>>
i- * o

T-"

till
6" o

CD

CD
sz

CD c CD

T5 !_ +-* C

o <L fill o
in

< CO coQ
o 71 c t
i_ CD tr O

e sz CO x:
< Q COO

O)
c

■5
o
ü
<u
Q
o
E
o
(0
o
E
o
I-
£
o

<Vi

0)
SI
CO

Next, the decoded chromosome is either locally optimized or its energy value is

just calculated. The constant, Minimization, determines which path to traverse. The

lower its value the less likely the evaluation performs local optimization. Local

optimization takes the form of either a Baldwinian (Davis replacement50) or Lamarckian

approach. In the Lamarckian method, the chromosome and its fitness value is replaced

by the best locally optimized chromosome. The Baldwinian approach, on the other

hand, just replaces the fitness value of the passed chromosome with the fitness of the

best locally optimized chromosome. Each of these techniques requires at least three

executions of the CHARMm energy model.

Appendix G contains data flow diagrams for the complete CHARMm energy

model. These diagrams document the design of the model as developed by Brinkman

[18] and Gates [15].

4.3 LLGA/PSP Design and Implementation Details

The LLGA is developed following an object-oriented methodology. The object-

oriented approach to software engineering is based upon the modeling of objects from

the "real world" and then using the model to build a language-dependent design

organized around those objects [71]. Object-oriented practitioners argue that the

paradigm promotes better understanding of requirements, cleaner design, and a more

maintainable system [71]. Consequently, it was our goal not to re-engineer the given

class interfaces or overall object design.

A few additions to the overall design were required to integrate Harik's

implementation with our problem domain. Figure 27 shows the complete LLGA class

hierarchy51. The classes "Bbtemplate," "Worst," and "timing" were added. In total, five

major challenges needed to be meet in order to integrate the LLGA with the PSP

problem domain. Each challenge is discussed separately.

50 In the code, it is called Davis Replacement not Baldwinian. Therefore, we choose consistency
with the code over exactness.
51 Appendix H contains the Rumbaugh diagrams for each object.

66

LLGA

population llga_io report timing

BBtemplate Worst Chromosomes

4 1 I
1 1 1 1

Genes Canonical Objfunc

A j\ Zf\

geneArray geneArray

x X
genes genes

Figure 27: LLGA Class Hierarchy

4.3.1 Challenge 1: Building Block Assumption

In Harik's original LLGA implementation, he assumed that the perfect building

block (BB) contains all "1's" in each allele. This is an unreasonable assumption for any

real problem. In particular, a [Met]-Enkephalin chromosome constructed from just 1's

represents a fitness of 12.980 kilocalories which is far above the the QUANTA™

minimum of -29.225 kilocalories [15]. We conjecture that Harik made this assumption

because he used the Max-Ones problem in order to show the power of the LLGA in his

dissertation [17]. The Max-Ones problem is a deceptive problem in which the fitness a

certain local maximum (represented by all 0's) approaches that of the global maximum

(represented by all 1's) [17]. Therefore, by "hard coding" his algorithm, he could drive

his solution to the global maximum!

To correct this situation and to generalize the algorithm, we included a new

attribute of a population called a BBtemplate (i.e. building block template). The

BBtemplate is loaded from a file during the creation of the population. On the other

67

hand, the BB template is never used to control the direction of search in either the

original LLGA or our modified version. The BB template's only function is as a

comparison tool used during reporting! Each chromosome in the population is

compared to the BB template to determine the number of BBs contained within the

population. If the global minimum/maximum is known, then the BB template can serve

as a compass indicating how close the GA is to the global minimum/maximum.

Otherwise, any string of 1's and O's can represent the BB.

Two other alternatives were evaluated before implementing the alternative

discussed above. The first alternative used a randomly generated chromosome as the

BB under the assumption that since for most real world problems we do not know the

optimal solution, a random guess at the BB distribution was as good as any. This is the

simplest solution, and probably the less likely to produce a "good" solution because

hopefully there is some educated guess from the problem domain which we could

incorporate into our approach. The next alternative we investigated involves a dynamic

BB that would start as a randomly generated BB. Then, as better solutions are

encountered, the BB template is updated to reflect the changing landscape. We

conjectured that this solution would be optimal in the situation that the BB within the

chromosome changed without increasing in number. For instance, it is conjectured that

the PSP problem relies upon 5 BB [15]. We also anticipate that as the protein folds too

more and more compact states, the dihedral angles included within the BB changes.

On the other hand, if we are constantly changing the BB template to match the optimal

individual, we may be driving the LLGA to a local minimum. Consequently, we chose

not to implement this method.

4.3.2 Challenge 2: Recording the Optimal Solution Uncovered

The original LLGA contained no process by which to record and report the

optimal individual found. It is possible for a GA to find the global optimum answer during

initialization, and then breed this chromosome out of the population during future

generations due to the destructive effects of crossover and mutation. Therefore, we

added a new attribute to the population called "worst52" that records the worst

chromosome found across generations. When our LLGA is initialized, we randomly

choose the worst chromosome from the problem space. Then, at the end of each

generation, we compare the worst chromosome to each member of the population. If a

68

population member has a fitness value worse then the previous worst chromosome, it

replaces the previous worst in the next generation. Once the GA has terminated, the

worst ever chromosome is reported with its fitness value.

4.3.3 Challenge 3: Integration of CHARMm

The integration of the CHARMm energy model into the LLGA was nearly trivial.

Harik's class decomposition allows for the inclusion of additional fitness functions in the

Objunc class. Basically, the objfuncQ needed to be changed to point to a new function

called CHARMM_EVAL(). Furthermore, the reporting functions in llgajo.cpp needed to

be updated to include the new fitness function name. Since we made the decision not

to completely re-engineer Harik's interface methodology, CHARMM_EVAL() parameter

list contains three dummy variables which was necessary for the llgajo reporting

function's look-up table to recognize the new signature53.

4.3.4 Challenge 4: Parallel Implementation and Execution Timing

It is one of the goals of this research to parallelize the LLGA and report on the

efficiency of the implementation. For parallelization, we used the message-passing

interface (MPI) standard to implement a master-slave-farming model54. It is the master's

responsibility to conduct the "normal" GA operations of reproduction and selection. The

master also controls the distribution of the fitness evaluations to each of the slaves. In

this model, the master usually remains idle while the slaves do their work. This leads to

an unbalanced distribution of the work per unit time which is undesirable because it

leads to under utilization of the processors. To curb this situation, the master also has

the responsibility of evaluating the "worst" chromosome during the initial generation.

There after, the fitness of the worst chromosome is copied during the recording of the

"new" worst.

The partitioning of the data is accomplished using three messages per

generation per processor. The first message from the master to the slave indicates that

slave is about to be put to work. The second message transmits the chromosomes the

slave needs to evaluate and the last message returns the evaluated chromosomes back

to the master. The major challenge in implementing this scheme was the construction

52 We choose to call the attribute "worst" because intuitively the minimum value is the worst.
53 All fitness function signatures needed to be consistent.

69

of the message. MPI does not intrinsically handle the transmission of C++ objects nor

does it handle composite data structures. In order to transmit a C++ object, we built an

MPI derived message type based upon the decoded chromosome object's atomic C++

data structures [72, 84]. The end result is less communication overhead, which

decreases the parallel LLGA's (pLLGA) execution time. The decrease of

communication results from not transmitting the chromosome string and its associated

fitness field as separate messages.

A finally note concerning the parallelization of the LLGA must be discussed. The

pLLGA requires an odd number of processors, and the number of slaves must evenly

divide the members of the population without a remainder. We placed this last

restriction upon the pLLGA in order to simplify the algorithm's implementation. Without

this restriction the master processor would have to unevenly distribute the workload.

This in turn would cause load-in-balance for the homogenous parallel platform, and the

need to investigate and implement an appropriate load-balancing scheme for the

heterogeneous AFIT Beowulf.

The efficiency of the LLGA has never been reported in terms of minutes/hours.

We chose to implement a separate class devoted to the capture and reporting of

execution times for the LLGA. Two aspects of the LLGA are report. The first is the total

time the LLGA is executed. Secondly, the total time spent accomplishing fitness

evaluations, the average per fitness evaluation, and the number of fitness evaluations is

also reported. This information indicates how much time the pLLGA spent conducting

parallel operations. An alternative approach would be to use global variable to capture

the timing, but global variable are NOT an appropriate programming construct under any

circumstances.

4.3.4 Challenge 5: Random Number Generator Correctness

The stochastic nature of a GA is totally dependent upon the implemented

random number generator. Dymek's Appendix A [66] covers the importance of random

number generators due to this heavy reliance. The random number seed dictates

where in the problem's search space the GA begins searching. Therefore, it is

extremely important that "good" random number generators are used. A good random

number generator is defined as one in which no "perfect correlation" occurs [66]; a

54 Models of parallelization are discussed in APPENDIX D. The LLGA follows the data
decomposition model.

70

perfect correlation between two random number generators results in the same

instantiated behavior from two separate GA executions. At first glance, this sounds

much worse than the situation warrants. For the purposes of validation of experiments,

two separate GA test runs, which start with the same random number seed, should

result in precisely the same GA behavior.

On the other hand, random number generators are only pseudo-random. The

randomness of the sequence of generated "random" numbers depends on the seed. It

is possible that two distinct seeds used to initialize a random number generator can

result in the same or over lapping sequence of random numbers. This results in two

separate GA executions having similar behavior, even though different random seeds

are used. This is not desired here. Thus, the random number generator needs to be

check to ensure: 1) that the random numbers produced represent a uniformly

distributed set of numbers between the lower and upper bound, 2) that the different

seeds used in testing do not correlate, and 3) that within a series of random numbers

there is no correlation indicating a relationship between the current random number and

a previously generated random number. Uniform distribution guarantees that the

random numbers generated have an equal chance of occurrence, as those that are not

generated. If two separate random seeds produce correlating sequences of random

numbers, two separate executions of the GA using these seeds would search the same

problem domain landscape. Finally, we do not want a correlation within a sequence of

random numbers because then our random sequence becomes predictable.

Figure 28 shows the results of evaluating the distribution of Harik's random

number generator using the first seed in Table 17.

71

Quantile-Quantile

0.8

01
Q.

% 0.6

c
3
S 0.4

♦ Seriesl

0.4 0.6

Precentiles of Uniform

0.8

Figure 28: Uniformly Distributed Random Numbers

Figure 28 represents a uniform distribution because if it were not the graph

would have a stepping characteristic which would indicate that a particular random

number was generated two our more times. Figure 28 was generated using the

random numbers manufactured during the creation of the chromosomes and the

determination whether or not to perform crossover.

Secondly, in order to determine if any two series of random sequences using

unique seeds result in a correlation as series of pairwise correlations were calculated

and tabulated along with their associated p-value. Table 13 indicates the results. Out

of the twenty different possibilities, there are only two cells that may indicate a possible

correlation. There maybe a correlation between the sequences of random numbers

produced by seeds (3 and 5) and (2 and 7). On the other hand, because we are using a

random number generator, it is possible that two sequences approximate each other

slightly as in our case (only 1/10th of the total number of comparison possible correlate).

If Table 13 indicated that there were correlations between more of the sequences (for

72

instance 25% of the cells indicated possible correlations), then we would be concerned

that the random number generator was not producing random sequences of numbers.

Sequence
1

1 2 3 ^E^|

«—«
e / ö

1 iiBiilBil! — — _

-0.00370
(0.71132)

1 —• I^IIBIlsIll lillllllilpllil — —

0.00670
(0.50281)

-0.00593
(0.55314)

1 ■|||(||illl|i ||Bj|||i^||||| |||||ISlll|||l« —

0.00599
(0.54934)

0.00544
(0.58679)

-0.00342
(0.73217)

1 — IHIPIslHHI — —

0.00428
(0.66843)

0.00493
(0.62227)

0.02151
(0 0315))

0.01951
(0.05103)

1 iiiÄ|||iiimi — —

-0.00019
(0.98526)

-0.00949
(0.34252)

0.01094
(0.27394)

-0.00873
(0.38284)

-0.00137
(0.89086)

1 - —-

0.00504
(0.61402)

-0.02191
(0 02844)

-0.00107
(0.91431)

-0.00150
(0.88097)

0.00695
(0.48706)

-0.01192
(0.23329)

1 -—

-0.00410
(0.68168)

-0.01333
(0.18250)

0.01704
(0.08841)

-0.00610
(0.54175)

0.00229
(0.81914)

0.00905
(0.36543)

-0.00016
(0.98672)

1

Table 13: Pairwise Correlation

Finally, the sequence produced by each unique seed was check to ensure that

there was no dependence between any generated random number. The following

graph is one example autocorrelation graph representative of each of the eight

sequences to a lag of 500 [85]. The "lag" indicates sequential relationship between the

random numbers compared for the correlation 55

Autocorrelation

N^l^lV^^^ |E3S arias 1 |

Figure 29: Autocorrelation for Random Seed 1

Figure 29 indicates that there is no correlation between the numbers generated.

If a correlation were found, it would be represented as a repeating pattern within the

55 A lag 500 test for a correlation between random numbers generated from the xth number up to its 500th

neighbor.

73

graph. The pattern could be on alternating sides of the x-axis (i.e. like to a

sine/cosine/tangent wave) or repetitive on one side of the x-axis either above or below.

None of the random seeds' autocorrelation indicated a correlation.

Therefore, together these three tests illustrate that the pseudo-random number

generator developed by Harik behaves in a random fashion.

4.4 AF1T CHARMm Inclusion of Ramachandran Constraints

As stated in Section 4.2, when a chromosome is passed to charmm_eval(), it is

first decoded. This decoding process is highly dependent on the current encoding of the

chromosome in the GA. This encoding is implicitly defined in Table 12, and it is

different for different molecules. Therefore, we choose to implement our constraints

methodology as a conditional compilation scheme by employing the C Mfdef construct.

The original code is shown in Figure 30 and our modified code is in Figure 31.

indexPtr = Indep_clihedral;
while findexPlr != NULL)

t
temp =

slice);
P[n] =

HI;

= (double) Cioi t&buffl

({temp / maxjrange) *

start],

iwoITi-

||||^^|||^^i|S|||^|||^||i|M|||^l|l|M||||
start = start + slice;
indexPtr = inde\.Pli->ne\t;

}

Figure 30: Orginal Chromosome Decoding

In the previous implementation, each dihedral angle is translated from its 10-bit

binary encoding to a radian value (a C double) between 0 and 2n. In the new

constrained CHARMm decoding, the dihedral is decoded and then mapped to the

appropriate constrained subrange of possible values depending on which dihedral it

represents.

74

indcxPtr = Inck*p_dihodral;
while (indcxPir != NULL)

temp = (double) Ctoi (&buiT| start |, slice);
temp = ((temp / max_rango * twoPT) - PI;
#i f'dcf Met-Enkaphiilin

/* non-glycinc phi */
case 1: ca*.e 10: case J3:

leinp = tirmp+(f-210 - -30)/twoPI) + -210;

/* glycine phi "7
case 4: case 7:

temp = lcmp*i(-315 - -45)/iu,oPI) + -315:

IlllB^
case 2: case 5: case S: ca*.e 11: case 21:

lemp = icmp*u21() - -9()VtwoPl) + 210;

/* omega */
case 3: case 6: case 9: CUM: 12: ca>«e 24:

temp = temp*<(-160 - -200)/twoPI) + -160;

/'" chi 1&3 tyrosine, chi2&3 moth ion ine *7
case 14: case: 22: case 19: case 20:

temp = temper-160 - -200VtwoPI) + -160;

/* chi2 tyrosine, chil pheny, chi 1 mctliioniiu* */',
case 15: case 16: cu\c 18:

temp = t<MTip*((75 - 45 j/twoPl) + 75;

/* chi2 pheny. chi4 methionine */
case 17: case 23:

lemp = tcmp*((-75 - -45)/twoPI) + -75;

default: printfC'error in n = r/i\",ny. exitO);

P|n| = lcrnp:

start = start + slice;
indcxPtr = indcxPtr->nc\t: ■■■■■■■■I

Figure 31: Modified Chromosome Decoding

The switch statement implements the transformations discussed in Chapter 2.

This transformation process needs to be encoded for each different protein because the

75

chromosomal encoding is different. Newman projections for each constraint helps in

visualizing the allowable regions for each dihedral angle, reference APPENDIX I.

4.5 Summary

Software reuse and portability have continued to be the driving force behind

AFIT's development of code. The design presented in this chapter has maintained

these objectives by integrating the object-oriented LLGA code with AFIT's own

functionally decomposed CHARMm energy model without major modifications to either

system. Furthermore, our novel incorporation of constraints can be easily disengaged if

the inclusion of constraints into the energy model prove to be fruitless. The next chapter

presents the engineering tests used to evaluate our modifications to the CHARMm

energy model and Harik's algorithmic approach.

76

5.0 Design of Experiments

In the process of studying the protein structure prediction (PSP) problem, we

have read many papers touting their experimental prowess, but if the truth were told,

very few computational researchers conduct objective experiments with the basic

scientific methodIn mind. A well-developed scientific experiment encompasses the

following characteristics: a measurable objective/goal (hypothesis), well-defined

methodology/procedures, validated results, and a logical conclusion(s). Conclusions

may support or contradict the objective, but either outcome leads to useful information

being provided. The scientific method consists of four repeated steps: observe,

hypothesize, predict, and test. For instance, if we want to prove "A" is true, we can

assume "A0" is true. Observe the nature of A0, and look for evidence that it is actually

not true. If "strong" evidence exists, we can concluded that A0 is false and A is true. On

the other hand, if weak or no evidence exist, then we must continue to assume A0 is

true. But this does not prove A0 is true. We can always restate our hypothesize and re-

evaluate "A" until what we want to prove is clearly valid or invalid. The scientific method

combined with objective scientific experimentation results in a sound irrefutable56

conclusion. For an in depth look at developing scientific experiments the reader is

referred to [75].

For the purpose of this research, the observed phenomenon is the protein

structure prediction problem, and the hypothesis is that the parallel Linkage Learning

Genetic Algorithm (LLGA) family57 can generate an "acceptable58" molecule

conformation, by employing the CHARMm energy model and local minimization

techniques as the fitness functions, more efficiently than previously employed AFIT

methods.

This chapter discusses how to test the LLGA (with and without domain

constraints), described in Chapter 3 and developed in Chapter 4. Section 5.1 covers

the proteins used. Section 5.2 describes the general data requirements and statistical

tests that are conducted. Finally, Section 5.3 establishes each of the experiments

performed to test the hypothesis.

56 Irrefutability implies that your conclusions cannot be proven false.
57 The LLGA family = LLGA, pLLGA, constrained-LLGA, constrained-pLLGA.
58 Acceptability is defined here as a GA calculated protein with an RMSD of less than 1.

77

5.1 Test Molecules

Two separate protein molecules are used for these tests. The first molecule,

[Met]-Enkephalin, is a very small polypeptide with only five amino-acid groups: Tyr-Gly-

Gly-Phe-Met59 using neutral NH2 and -COOH as terminators at the cc-amino and oc-

carboxyl ends, respectively. This protein was chosen because it has a confirmed

conformation using the QUANTA™ package and was used by relevant research efforts

[6, 7, 8, 9, 14, 15,18, 37, 52, 66, 73]. The second molecule, Polyalanine57, was chosen

because of its affinity to nicely fold into a a-helical structure. Polyalanine57, a larger

polypeptide than [Met]-Enkephalin, is defined by 57 amino-acid groups: Ala-Ala-Ala-...-

Ala60. We have chosen to use the same end groups as the [Met]-Enkephalin molecule.

Figure 32 and Figure 33 are representation of [Met]-Enkephalin and Polyalanine57,

respectively. The figures are labeled to distinguish the dihedral angles along their

molecular backbone. Table 14 and Table 15 outline the "correct" dihedral angles values

for the "accepted61" energy minimum defined by QUANTA™. The conformation energy

for [Met]-Enkephalin is -29.225. Alternative molecules have been considered, (e.g.,

Crambin [79], P27-4 [80], P27-6 [80], P27-7 [80], cellular acid binding protein I [81],

cucumber stellacyanin [81], endoglucanase [81], histidine-containing phosphocarrier

protein [81], ubiquitin conjugating enzyme [81], and the Abl-SH3 domain of tyrosine

kinase protein [62]). These molecules were not used because of their large size and

because they have no accepted minimum conformation at this time.

Residue
Dihedral Angle (degrees)

Tyr -86 156 -177 -173 79 166 —

Gly -154 83 169 — — _ _

Gly 84 -74 170 _ —- — ■

Phe -137 19 -174 59 -85 — —

Met -164 160 -180 53 175 -180 -59

Table 14: Dihedral Angles for [Met]-Enkephalin Accepted Energy Minimum

59Tyrosine-Glycine-Glycine-Phenylalanine-Methionine
60 Alanine times 57.
61 Different molecular energy calculation engines may compute different energy values for the
same molecule.

78

r-

(0
£
Q.

C
111

<D

£
o
(0
E

c
o
Ü
T3
0)
XI
c
0)
4-«
X

LU

CM
CO

0) v.
3

E
3
E

I<^ o o o c
■ CM m m m 2 BiÄfe WZZi. •W$&< W*i* am» ■ — WM — ■— > ■ ° O o O D)
■ co ■HP to

1
CO
lip

CO
ipp CD

C

Bo o Q o UJ
55 to <0 CO CO

0>
*■> a
V

o mm sis» o In O O O o ■ co m CO mm <
a>
c
'E
(0
(0

spi% *—■v >» m~ r> o ■) ■ m in m t o
■ co
3 I

CO
lip

CO
if!

a.

|°o o
O

o
O

all
O

o
■AO CO CO 3» (A

-w

c
<

■° in o O CO
Jin ■ in

CO
in
Ü 3 ■a

n
in

• ^~
**#ili OJ n 6; <l>
M» CO CO CO .□

CO
i-

< |g ■ <

o
00

a>
c
"E
«
co
>.
o
0.

c
o

■■§
E

c
o
Ü
■D
a>

T3
C
CU
4-» x
UJ

CO
CO

V
1_
3
D)

* "Wl

5.2 General Data Requirements

Here we examine the general variety of data to be collected during the

experiments, the random number seeds used to initialize the experiments, and discuss

the general types of statistical tests that can be performed upon the collected data.

Experiments are designed either to test effectiveness of a "new" algorithmic approach to

a problem and/or to test the efficiency the algorithm has towards solving the problem.

Our experiments examine both effectiveness and efficiency performance of the LLGA

family.

5.2.1 General Data Requirements

Table 16 indicates the general types of data collected for each experiment. If a

specific experiment requires additional data to be collected, the methodology portion of

the experiment description identifies the additional requirements. The general types of

data collected per evaluation include:

♦ The random number seed used,
♦ The best individual's fitness value,
♦ The best individual's chromosome (binary) representation,
♦ The best individual's coordinates,
♦ The worst individual's fitness value,
♦ The average fitness per generation,
♦ All the chromosomes evaluated and their fitness values,
♦ Any parameters,
♦ The overall execution time,
♦ The CHARMm execution time,
♦ The average CHARMm execution time, and
♦ The number of fitness evaluations performed.

81

CO
co
ffl
c

>
lip

IS

E
ßm Ipst

0
x
c
ill

I +■» CD

Q) *■•;
T3 CD

CD .2
Q» ."ti
0) c

'II
II
CD v.

\ty 0)
Xti

CO p

0
CO
3

, CD

£ <
c X.:

l|
s =
a> -92

CD

E
3

£
. o
1 C CD

CO CD

to
CO
CD c
?

1! -*—
uj

CO

o
8

IS™
CO

1_

liS
CD
Q-
CD

i^f-.
kr
O
c
o

"O
i C

©
c
o

CO

o

CO

■g
">
~°
to
CD

iXi

CD
X

■
CD

^- 'JZ
H— CD o a,

CD x:
c o
;t; cc
U. CD

CO

"co
T3

c <"
i— CO
!->- CD

CO ci
CD •äi

CO Ü-

o
CO

[N
70
CO

>

JtO

75
3

iTJ
>
C

<5 cd: £ 0)
co CO
CD _£.

s 2
C 03

CD ©i

o
CO
O

Si o 5
c

° ■+=:
CD CO
f- O
|_ o

CD

£
CD

CD

CO
CD

O

«5

§ <Di

■5: O
— CO

"D O

£ B
*- o
CO C-
CD x
P Ü

to

SI
c

.Si
■■W !

lift

»♦—

mm

3
"O

>

IH1

CD

C
o

W Ö T

Xt ® .S*
0) n| x a o *= o

*P- CO ,_
o 2 £
0 er i
CO o>-=
(I) C.E

CO N CD

"2 C-D
O CO CD

XI CD1

CD _ U
X ~ ü
r 5 ffl

CD

co ■£.
CD CD
xi a.
■1 CD
Ä»r:::.;

O co
CO CD

"co o!

81
iiii
3

o .2
^ "II

"co
S 3
> "S

*- !? co O
(D Q

CD O

co

c

I
toil

o
8
CO

E
.MM *f"

<o
a.
©
si

c
2

o
"a
c
CD

o
.52

JE *^
h- C5

co
3
■o

^ .
■-= c
tS CD

S E

iS CD

CD §J
£ CD

O u
"> S CO CD

C £=
.t: o
U- i:

IB
lei
■a
>
-a

!5 u.

CO
co
CD
c
1
CD

111

CD

O

CD
Q.

1
o
CD

C
O

!C J
C <:
< CD

c
o

5'I
m

"o ^~
co o
S3 * CD CD

.-£ £
*- O
CD ^

CD g

3
CD Q.

CO
CO
CD
iiSi

ii-
CD

3i

P|

S im us«

s
CO
o
T3
C

co
CD

1
in
§m
E
o ■*=
J= CO

■S.2»
o 8

o §
x^<

CD

CO
3

•D

! C

x:
co
CD

c
CD

CD .E
t CD
Q a.

o
o

O Ü
CO
CD

P

CD

•»-* CD

OÖ 3

tJ: CO

CD «^

^ CD
CO C

LU U.

ci
— Oi
8'"Si

I o
in £

T5
CD

'3
CT
CD

Id
E

iff

JZ
CD O
X CO
^ c13

M S
to 2
.2 CD

w S1

CD

S
D
Q.
C
CO

CO

CD ^

! CO *p;

CO Ci

lei
IP
«I m
21
«I

u c
CD
Ü

iiil

0

i
c
CD

in—

"S
■D
C
Mil

is
co
o
CO

CD
•*-^ '■

CO
y

o
■fa*

T3
CD
CO

CO
CD

l
2
Q.

IS
IÜ

CD

E
h-
c
2

■^

u
CD
X

LU

ifrl
c
2
2

MB

o
>.
o
c
CD

2

|5
■a

co
>.

co
CJ
to

CD

CO
Ü
TJ
C

CO
CD

m
aJi
IS]

CO

c
o
3

113*
1SI
O
US
c
I»
Q.

mm
CD

^--> ---
C *5

Cgüi
•P o o>i
s *s coi

I • c
CD I- «=i

CD

E
M
E

12 1
tr
<

o

c
2
o

I»*—

Iiil

CD
X

o

2
'2

-a
c :«■

■1
CO
o
CO

co

m 'S
o

*- CO

■o 2
CD a

JCO Q.

ZJ CO

to

o
^ eg
c ^

CO CD
CD CO

I— C

CD ^

c?g>
51 iipiS
Ipü

CD c

III

E

tx
<
ü
CD
CO

2 CD
CD C
> .=
< h-

&l
C
2
.2
HI

o
c
2
'2
iE
lull
l"S
c
.2
"co
o
T3
c
■o
CD

mm
3
>s
C
o
E
E
o
o
■ill

CD

co
CD _Ji

E||

£ si
Xl Ci
 SSsÜsSÖSü

:35!
cOCi

I— o

CO
c
0

■«M:: 'iffit
u m

■^KSwifS 3
am
m
m 5
ma ip
L. C/)
m CD
sz L,
r™" »+-

C
CD

E
a>
Q.
X

111

X
Ü
(0

UJ

to
c
CD

E
v
i_

"5
cr u

DC
CO

13
a
75
i_
a)
c
CD
(5

CO

0)
Xt
CO
I-

00

5.2.2 Random Number Seeds

The LLGA requires the random seed to be a real number (of finite decimal

representation) in the interval between 0 to 1. Since the LLGA bounds the random

seed, we have chosen to use seven uniformly distributed random numbers within this

range. The random seeds were pulled from [77] and scaled by placement of a decimal

point prior to the first digit. Table 17 indicates the seeds used for each GA experiment.

Set LLGA (all variants)
1 0.014150
2 0.107629
$ 0.241816
4 0.-M5874
5 0.680467
6 0.805G48
7 0.928304

Table 17: Random Number Seeds Use In Initialization

5.2.3 Root Mean Squared Deviation (RMSD)

Root Mean Squared Deviation (RMSD; p=2 norm) is one way of comparing a

calculated molecule's conformation to the naturally occurring conformation independent

of the calculated fitness62. For instance, a GA may produce a molecule conformation

(X), which approximates the accepted energy level of the best known conformation (Y),

but internal coordinates for each atom within X may not closely correspond to the

positions within Y. Thus, this analysis compares a GA best produced molecule to the

naturally occurring molecule. RMSD is used in particular because the PSP community

commonly references RMSD calculations. Therefore, we can compare our results to

other research efforts, although, it must be stressed that different energy models may

provide different energy values for the same molecule even when the internal geometry

is the same. The general equation for this calculation is:

ifnumbeirf dihedrabngles

RMSI*=_ ^(Jiliedrcg R-dihedratU,llaj]
/=i

Equation 20: RMSD Calculation

62 Other norms include: p-norm, maximum distance between points, maximum difference in
probability, absolute difference, etc..

83

5.2.4 Test Platforms

Experiments are executed on the Aeronautical System Center (ASC) Major

Shared Resource Center (MSRC) IBM SP2; the Air Force Institute of Technology (AFIT)

network of workstations (NOWs); and on the AFIT ABC Beowulf. After initial testing, it

was decided not to use the NOW due to its lack of computational power. A single

execution of the LLGA using all available processors (6) requires 48 hours to

complete63. Table 18 indicates the number of processors used, the random number

used, the population size, and the chromosomes per processor. Hardware limitations

dictate the current upper limit for the AFIT Beowulf system. For a complete description

of each system see APPENDIX K.

Number of
Processors

Random
Number

Population
Size

Chromosome
Per Processors

IBM SP2 AFIT Beowulf

1 0.014150 50 50 X X
2 0.107629 50 50 X X
3 0.241816 50 25 X X
5 0.445874 52 13 X X
9 0.680467 56 7 X X
11 0.805648 50 5 X X
17 0.928304 64 4 X
^3 0.999999 75 I 50 3I2 X

Table 18: Processor Allocation per Architecture

5.3 Experiment Specifics

General parameters for the LLGA are given in the following table' 64.

63 See Appendix K for a complete description of each platform.
64 IMPORTANT! See Appendix F for a sample LLGA input file, and the CHARMm energy model
input files!

84

Parameter Description Impact
UponGA

building.._blocks Specifies the number of building blocks.
[Met]-Enkephalin = 24
Polyalanine = 228

NO

(test function) This field requires 5 entries.
Building Blocks: 1-building blocks
Test runction: Cl IARMM. CVAL
Bits per Building Block: 10 for both molecules
Signal Ratio: 0.07
Weighting: 0

NO

iPlllllllSllllli
IllalllllllllllSi

coding_genes Specifies the number of coding genes. It is the
same as the chromosome length in the simple

[Met]-Enkephalin ^ 240
Polyalanine = 2,280

NO

noncoding_genes The number of introns to include based upon
Equation 43.
[Met]-Enkephalin = 4,650 crossover disruptive 5%
Polyalanine = 7,752 crossover disruptive 15%

YES

Popsize Size of the population. For the purposes of these
tests we have fixed the population size to 50
chromosomes.

NO

selection_operator tournament selection between parents and
children.

YES

selection rate The number of chromosomes per tournament. YES
Pcross Ranges between 0 (never crossover) to 1 (always

crossover).
YES

stop_criteria Number of generation to execute the LLGA. With
pcross = 1, the number of fitness evaluations per
generation equals the population size.

YES

YES Seed The random number generator seed.
report population Write output to a file (on = yes, off = no). NO
report bestjndividual Write output to a file (on = yes, off = no). NO
Bbtemplatejilename The filename of a file with a single chromosome in

canonical form.
NO

Table 19: General LLGA Parameters

5.3.1 Experiment 1: Parallel vs. Sequential LLGA

Objective: The objective of this experiment is twofold. The first objective is to

validate that results from the sequential LLGA (sLLGA) are equivalent to those obtained

in the parallel (pLLGA) version. Many man-hours have been spent ensuring the

behavior of the pLLGA is in accordance with the sLLGA. Furthermore, correctness is an

issue because there is greater difficulty in verifying correctness of parallel algorithms

85

than sequential algorithms [36, 37]. Secondly, we wish to characterize the efficiency of

the pLLGA in terms of overhead, speed-up, and scalability.

Methodology. Harik's serial implementation [17] which we modified to

incorporate the CHARMm energy model is used for the sLLGA.

A data parallelized implementation based upon the sequential LLGA is employed

for the multi-node experiments. Chapter 4 presents low-level design and

implementation details. Comparison between the single node and the 2 node parallel

runs are used to calculate the empirical overhead imposed by the communications

library. Parallel executions using 2, 8,10, 16, and 25 processors are used to evaluate

scalability and speed-up of this algorithm.

Parameters for each test case are supplied in Table 20. Since the purpose of

this test is to characterize the two implementations, a single random seed for all

experiments is selected. The random seed corresponds to set 3 from Table 17.

Results and analysis are presented in (SECTION 6.1).

Parameter
selection_operator

selection rate
pcross
stop_criteria
seed
report_population
report_best_.individual
BBtemplateJilename

Description
tournament selection with replacement
tournament selection w/out replacements

0.70
1,000 generations
0.241816
on
on
BBtemplate.txt

Table 20: Parameters for Experiment 1

5.3.2 Experiment 2: Constrained vs. Non-constrained Sequential LLGA

Objective: Chapter 2 indicates a growing body of information being developed

about the PSP problem domain. Intuitively, it seems that if we incorporated new

information in order to constrain our search space, then perhaps we could improve

search performance. Charles Kaiser pioneered AFIT's expedition into this realm by

incorporating the constraints developed by Ramachandran [61]. His experiments

showed great promise, but he encountered some computational problems (see

SECTION 2.4). As discussed in SECTION 2.5, we have re-evaluated and re-

implemented Kaiser's work directly into the decoding of the binary chromosome. The

86

validation of this new design and implementation is the objective of this experiment.

The two implementations are compared for effectiveness and efficiency.

Methodology. Experiments for each test case are executed as in experiment 1.

The "best" molecule found by both implementations is compared based upon total

energy and RMSD from the accepted conformation. Furthermore, since constraining

the LLGA impacts the algorithm's execution rate, the execution time for each

implementation is compared to determine the cost of additional calculations.

Low-level implementation details for the constrained-LLGA are given in

CHAPTER 4. Parameters for each test case are supplied in Table 21. The results from

this experiment are summarized in (SECTION 6.2).

Parameter Description
selection_...operator tournament selection with replacement

tournament selection w/out replacement.
selection rate 4
pcross 0.70. 0.75, 0.80. 0.90
stop criteria 1,000 generations
seed The seeds used follow Table 17.
report population on
report best individual on
BBtemplateJilename BBtemplate.txt contains the Quanta conformation.

Table 21: Parameters for Experiment 2

5.3.3 Experiment 3: Constrained Parallel LLGA vs. Non-constrained Parallel
LLGA

Objective: The basis for this experiment is to characterize the efficiency of a

pLLGA that also incorporates the insight gained by the constrained-LLGA. By

parallelizing the constrained-LLGA, we may receive even larger efficiency dividends

then from the sequential version.

Methodology. Experiments for each test case are executed as in Experiment 1.

A data parallelized design and implementation based upon the sequential constrained-

LLGA is used for the multi-node experiments. Chapter 4 gives the low-level design and

implementation details. Comparison between the single node and the 2 node parallel

runs are used to calculate the overhead imposed by the communications library as in

experiment 1. Parallel executions using 2, 8,10, 16, and 25 processors are used to

evaluate scalability and speed-up of this algorithm. RMSD calculations are performed

on the best resulting chromosome.

87

The implementation of the constrained parallel LLGA is a coupling between the

constrained-LLGA and the pLLGA. Design and implementation details for each are

given in CHAPTER 4. Parameters for Experiment 3 are the same as those presented

in Experiment 2. Results are presented in (SECTION 6.3).

5.3.4 Experiment 4: Constrained-pLLGA vs. Constrained Para-REGAL
Implementation

Objective: The objective of this experiment is to characterize the constrained-

LLGA against previous AFIT GA/PSP implementations. As stated earlier, Kaiser [37]

pioneered AFIT's approach to constraining the search space of the PSP problem, and

as discussed in CHAPTER 2, he encountered a few shortcomings with his

implementation. On the other hand, he was able to uncover the "lowest" known [Met]-

Enkephalin energy to date (-30.32 kcal/mol) [52]!

Methodology. Experiments for each test case are executed using 11

processors on the Air Force Institute of Technology (AFIT) ABC Beowulf.

The best chromosome found is compared with Kaiser's results and to the native

conformation using RMSD. The Quanta defined conformation is used as the template

for successive testing using the same random seed. Efficiency of the two algorithms is

also characterized even though Kaiser's implementation is serial. Results are presented

in (SECTION 6.4). Parameters used are in Table 22.

Parameter Description
selection__pperator tournament selection with replacement

tournament selection w/out replacement.
selection rate 4
pcross The best rate as determined by earlier test.
stop_criteria 1.000: 10.000. and 20.000 generations
seed The seeds used follow Table 17.
report., population on
report_best individual on
BBternplateJilenarne BBtemplate.txt. With each successive execution the best

molecule found is fed in as the next BB template.

Table 22: Parameters for Experiment 4

5.3.5 Experiment 5: Constrained-LLGA, Non-constrained LLGA, pLLGA,
constrained pLLGA vs. fmGA

88

Objective: Previously, the most promising Linkage Learning GA (LIGA)

employed is the fmGA. This test compares the results of the fmGA to the LLGA family.

It is anticipated that the LLGA family of GAs grossly outperforms the fmGA.

Methodology. Experiments for each test case are run using 1,2,8,10,16, and

25 processors on the SP2, and each experiment is executed using 1, 3, 9, and 11

processors on the ABC Beowulf. Harik's serial implementation [17], which is modified to

incorporate the CHARMm energy model, is used for the sLLGA.

The data parallelized implementations are used for the multi-node experiments.

Chapter 4 gives the design and implementation details. Comparison between the single

node and the 2 node parallel runs are used to calculate the overhead imposed by the

communications library. Parallel executions using more than 2 processors are used to

evaluate scalability and speed-up of the different implementations. (Note: twelve

processors are the current upper limit upon the ABC Beowulf due to hardware

constraints.)

The best molecule found in each run is used in as the next execution template.

The absolute best molecules uncovered undergo RMSD evaluation against the

accepted conformation. Results are presented in (SECTION 6.5).

Parameters for each test case are supplied in Table 23.

Parameter Description
selection_operator tournament selection with replacement

tournament selection w/out replacement.
selection rate 4
pcross The best rate as determined by earlier test. The crossover

rate in the fmGA is set to 0.70 with mutation set as 0.01.
stop criteria 1,000 generations
seed The seeds used follow Table 17.
report_population on
report_best_individual on
BBtemplateJilename BBtemplate.txt. With each successive execution the best

molecule found is fed in as the next BB template.

Table 23: Parameters for Experiment 5

5.4 Summary

The methodology outlined in this chapter is used to analyze the LLGA, the

parallel LLGA, and the constrained LLGA against previous AFIT PSP algorithm

89

implementations. The objective and parameters for each experiment are laid out as well

as the basis for validating the results. Finally, we note that the data from AFIT's

previous experiments is used; we are not going to re-execute past research.

90

6.0 Results and Analysis

The results from the experiments put forth in Chapter 5 are summarized in the

following sections. Raw data is available in electronic format. Each experiment was

executed as documented. Furthermore, some general observations concerning the

execution behavior of the LLGA are documented in Section 6.7. Our visualization of

the [Met]-Enkephalin energy landscape is discussed and analyzed in Section 6.8.

6.1 Experiment 1: Parallel vs. Sequential LLGA

The first objective of this test is to validate the results from the sequential LLGA

are equivalent to those obtained by the parallel LLGA (pLLGA). Since the random seed

were the same during all executions, comparing the "equivalence" between the two

implementations is little more than ensuring that the same end results are produced by

both implementations. Table 24 indicates that the energy characteristics for the LLGA

and the pLLGA are the same. This comparison alone does not irrefutably conclude that

both Linkage Investigating Genetic Algorithms (LIGAs) behave identically because the

ruggedness of the energy landscape may skew the results.

implementation Optimal Energy Found Average Population Energy
LLGA
pLLGA

0.351708
-9.86312 0.351708

Worst Energy
18.9437
18.9437

Table 24: End of Execution Energy Comparison bewteen LLGA and pLLGA

It is possible that the [Met]-Enkephalin energy landscape searched by both

implementations could have similar energy characteristics. Therefore, for further prove

that both implementations behave similarly, we compared the final populations from the

two executions. This comparison showed that both LIGAs produced the identical final

populations. Therefore, we can conclude that both LIGA implementations search

identical areas of the protein's energy landscape.

Secondly, the efficiency of the pLLGA in terms of communication overhead,

speedup, and scalability was characterized. Table 25 lists the average execution times

for the pLLGA running on the ABC Beowulf and Maui High Performance Computing

Center's (mHPCC) SP2, respectively.

91

Number of
Processors

Average Execution Time
(seconds)

Average Execution Time
(hours)

1 57123,75 15.87
2 50839.64 14.12
3 36970.50 10.27
5 19677.14 5.47
9

11
15735.44 4.37
18085.14 5.02

Table 25: pLLGA Average Execution Times - ABC Beowulf

Number of
Processors

Average Execution Time
(seconds)

Average Execution Time
(hours)

1 85403.22 23.72
2 87660.46 24.35
3 57451.06 15.96
5 40280.68 11.19
9 33578.82 9.33
11 29388.20 3.16
17 32562.04 9.05
26 24699.22 6.86

Table 26: pLLGA Average Execution Times - Maui SP2

The total overhead is the difference between the cost of performing the problem

on a single processor and the cost of performing the same task on the parallel

architecture. This "cost" represents the amount of time the parallel implementation

consumes performing communications, which is the penalty for using a parallel

application. Equation 21 illustrates the communication overhead (T0) where Tp is the

parallel time and Ts is the best sequential time to complete the task [36]:

T = T -T \o p &

Equation 21: Total Overhead

By subtracting the single processor version from the two-processor version of

the pLLGA executed on like processors, we calculated the total overhead for the pLLGA

implementation as 0.57 hours on the AFIT Beowulf and 0.63 hours on the mHPCC SP2.

These two implementations perform the same amount of work except the 2 processor

pLLGA farms out its fitness calculations to a slave processor. Of course, the calculated

overhead hours represent the total overhead accumulated over 5,000 generations. The

92

total overhead per generation is only 0.41 (Beowulf) and 0.45 seconds (SP2), which is

much more reasonable when considering the amount of data being passed between the

two processors.

Speedup (S) is a measure capturing the relative benefit of solving a problem in

parallel. Equation 22 defines the speedup calculation [36].

Equation 22: Speedup

There are two terms with which one must be familiar with when discussing

speedup. The first is linear speedup. Linear speedup increases proportionally with the

number of processors. Super-linear speedup, the second term, is when S > p (p is the

number of processors). Although, this phenomenon may be observed it is usually due

to either 1) a non-optimal sequential program or 2) the parallel programs ability to take

better advantage of the memory hierarchy [36]. Figure 34 illustrates the speed-up

obtained by parallelizing the LLGA over the range of possible ABC Beowulf and mHPCC

SP2 processors.

93

14 -

12 -

10 -

% 8-
■D
O
0) a

</>

6 -

4 -

2 -

0 -
C

Speedup

~*~ Linear Speedup

—•— Beowulf pLLGA

-X - SP2 pLLGA

 ^~"
^ , ,— -~~~" "*

"'

) 5 10 15

Number of Processors

20 25

Figure 34: pLLGA Speedup

From Figure 34, the ABC Beowulf speedup curve indicates that once 5

processors have been applied to the task no more speedup is obtained. Actually, we

see a decrease in the achieved speedup. What happens at the five processors point is

that the ratio between computation and communication shifts from more computation

time required to more communication time required. The steep decline from 9

processors to 11 processors shows the addition of the 200 MHz. Pentium Micron. This

much slower processor hampers the computational performance of the implementation

as well as the communications between the processors. The standard deviation and

variance for Figure 34 and Figure 35 is provided in Table 27.

94

Beowulf
Number of Standard
Processors Deviation

Variance
SP2

Standard
Deviation

Variance

1 36645 1342880866 ?4 5475
2 458 209768 G039 3G463842
3 7664 58743450 4575 20931207
5 12 142 2565 G5R1009
9 84 4936 G51 423401

11 58 3416 1708 2917504
17 ^iiiisiiiiiii^iii — 397 157565
26 HllllBi^BIlBSIllIIHlllMlIlllÄiliHllllHllllI 1498 2243089

Table 27: Statisticals For pLLGA Implementations

On the mHPCC's SP2, the pLLGA seems to achieve "some" speed-up each time

we increased the number of processors. This is due to the optimized communications

backbone of the SP2 that tilts the balance of computation to communication ratio

towards the computation side of the equation. On the SP2, there are dedicated

processors to handle the communications, but on AFIT's Beowulf there are no dedicated

processors just for communication. Therefore, every time a message is passed

additional communication overhead is generated on AFIT's Beowulf.

Finally, looking at the efficiency (E) of the pLLGA implementation, we see the

same behavior. Efficiency, governed by Equation 23, is a measure of the amount of

time for which a processor is accomplishing useful work (i.e., not idle) [36]. The

efficiency of the pLLGA steadily increases until the 5-processor mark from which point it

continues to drop off. Once again, this indicates that the communication overhead is

beginning to dominate the parallel performance equation. The initial dip in the ABC

Beowulf's performance indicates the move from 2 processor (the sequential application)

to 3 processors. On the other hand, the efficiency of the pLLGA on the SP2 is horrible.

The SP2/pLLGA combination reaches 50% efficiency at 3 processors then sharply

drops to only 13% efficiency with 26 processors. This indicates that the pLLGA is not

scalable on the SP2.

Equation 23: Efficiency

95

Efficiency

0.8

£

0.4

0.2

1 1
H*~ Ideal

-+~ Beowulf pLLGA

™K--SP2pl_LGA

—■-I........

1 1 1 : r

10 15

Number of Processors

20 25

Figure 35: pLLGA Efficiency

6.3 Experiment 2: Constrained vs. Non-constrained Sequential LLGA

Our tests indicate that the inclusion of the constraints into the decoding of the

chromosome add a negligible amount of overhead to the LLGA's execution time.

ABC BEUWOLF IBM SP2
CLLGA LLGA cLLGA LLGA

Average Execution Time (sec)
Average Execution Time per
Energy Calculation (sec)

40902 36343 89235 85403
0.1383 0.1213 0.2811 0.2638

Table 28: Constrained vs. Non-Constrained

Table 28 indicates that for both platforms the inclusion of the constraints into the

decoding of the chromosome behaves as expected. Since the re-engineering of the

AFIT's CHARMm energy model to include Ramachandran constraints meant including

one additional add, subtract, multiply and divide operation per chromosome evaluated, it

96

was not expected that this "new" methodology would overwhelm the computational time

of the algorithm.

On the other hand, the inclusion of the constraints had a noticeable affect on the

effectiveness of the algorithm. Figure 36 and Figure 37 show the energy

characteristics for the cLLGA and the LLGA, respectively. As can be seen in Figure 36,

the cLLGA quickly narrows the breath of the search area as indicated by the sharp initial

drop in the energy trend lines. This is due to the constraints put on the search space

and is not an effect of a change to the LLGA algorithm. Finally, the final energies

uncovered by the cLLGA are much better than the LLGA as indicated in Table 29.

Algorithm Optimal Energy Average Ener< ay Maximum Energy
[•[Hffi^H -16.3584 -10.426 -1.87393
fflcll^H -9.86312 0.351708 18.9487

Table 29: Final Energy Characteristics for the LLGa and cLLGA

97

Energy per Generation

|5 15.00 4

c
UJ

CM ro ■sl- w CD i^
10 o IT) o in o

co ■* CD i~- O)

Generation

Figure 36: Energy Characteristics of the cLLGA

98

Biergy per Generation

45.00

35.00

25.00

§5 15.00

c
UJ

5.C0

-5.00

-15.00

-25.00

-maximm

-average

rririnxm

t 18.9437

0.351708

-9.85312

i-c\in^in(Dsooo)OT-t\i(0'i-in(DN<ioo)Oi-N(0'j,m(DScoc)Oi-t\ico'j-
mOmOinOlDO(D7-(OT-(OT-tOi-(DT-NWSNNWNWNNCO(OttiniB
i-(o^(ONO)ocMnin<ocoo>i-WTfinNflooi-n^(ONO)oc\inmiDcoo)

,-i-r-7-i-i-T-(MNCM(MWwnn(oncococO'<i-'<t'*'*'<f^'t

Generation

Figure 37: Energy Characteristics of the LLGA

6.4 Experiment 3: Constrained Parallel LLGA vs. Non-constrained Parallel

LLGA

As stated earlier in Section 6.3, the additioned overhead added from the

constraints did not noticeably effect the execution time of the LLGA. Therefore, the

comparison between the overhead, speed-up, and efficiency of the constrained parallel

LLGA (cpLLGA) and the non-constrained pLLGA does not reveal startling new

information. Table 30 compares the calculated overhead for these two

99

implementations. As expected, there is not much difference between both

implementations' overhead.

Algorithm
pLLGa
cpLLGA

Beowulf
0.57 hours
2.31 hours

mHPPC SP2
0.63 hours
4.76 hours

Table 30: Total Overhead for cpLLGA and pLLGA

On the AFIT's Beowulf, the overhead per algorithm is 0.41 seconds (pLLGA) and

1.66 seconds (cpLLGA) per generation, whereas, on the mHPCC SP2 the overhead per

generation per algorithm is 0.45 seconds and 3.42 seconds, respectively. The higher

overhead is attributed to the differences in processor capability.

Figure 38 shows the speedup of the cpLLGA as compared to the pLLGA on

both test platforms. As expected, the speedup of the cpLLGA is nearly identical to the

pLLGA. There is a noticeable difference in the cpLLGA executing on AFIT's Beowulf

with five or more processors. In this configuration, the cpLLGA's slave processors are

required to perform additional computations. This shift in computation is reflected by the

increase time spent in parallel operations that directly affect the speedup and efficiency

calculations. The sharp decline in speedup for the cpLLGA is a result of adding the

much slower 200 MHz. Pentium Micron.

A similar pattern is seen in Figure 39. Figure 39 shows the efficiency of the two

different algorithms. Again, the additional calculations of the cpLLGA makes this

algorithm more efficient because now each slave processor is required to perform a

greater share of the overall computation. Therefore, these processors are idle for less

of time as compared to the slave processors in the pLLGA implementation.

100

Speedup

10 15

Number of Processors

Figure 38: Speedup Comparison between pLLGA and cpLLGA

101

Efficiency

I'M ""■■■

c
0)
u U x it: ii

LU Vi..s-

- Ideal
« Beowulf cpLLGA

-♦-Beowulf pLLGA
-*-SP2 cpLLGA
-*;-SP2 pLLGA

0.2

=£

10 15

Number of Processors

20 25

Figure 39: Efficiency Comparison between the pLLGA and cpLLGA

6.5 Experiment 4: Constrained-pLLGA vs. Constrained Para-REGAL

Implementation

Although Kaiser does not provide any efficiency evaluation for his Para-REGAL

system, he does supply enough data to piece together a rough comparison between our

respective approaches. Kaiser executed his experiments for 100,000 evaluations using

a population size of 50 on four separate islands [37]65. On average, these tests

expended 4.675 hours [37]. The constrained-LLGA (serial version) used a population

size of 50 and terminated with 250,051 evaluations and consumed 11.362 hours on

average. Therefore, the constrained-LLGA accomplished 2.5 times the amount of work

65 There is no data indicating the number of processors used. We have assumed he used 1
processor per island for a total of four processors.

102

in approximately 2.43 times the amount of time. Thus, constrained-LLGA is slightly

more efficient than the Para-REGAL system. Expanding this comparison to include the

constrained-pLLGA using only three processors66, the constrained-pLLGA outperforms

Kaiser's Para-REGAL system. This implementation using fewer processors

accomplished more than twice the amount of work (250,051 evaluations) in less than

twice the amount of time (8.195 hours).

These results could be skewed towards the constrained-pLLGA because,

although Kaiser does not explicitly state the system architecture used to evaluate his

Para-REGAL system, the best available systems could have been the Ultra Sparc

Workstation Network. We excluded this system from our test platforms because of its

much smaller computational power in comparison to the IBM SP2 or AFIT ABC Beowulf

(see Chapter 5). Our initial testing indicated that the Ultra Sparc Workstation network

ran nearly twice as long to execute the same application as the ABC Beowulf. Taking

this into account greatly closes the gap between the efficiencies of these two separate

approaches.

6.6 Experiment 5: Constrained-LLGA, Non-constrained LLGA, pLLGA,
constrained pLLGA vs. pfmGA

As seen in Figure 40, the pfmGA outperforms every member of the LLGA

family, but this was not expected from the algorithmic discussion in Chapter 3. The

LLGAs were an order of magnitude less complex than the fmGA. The better overall

execution times for the pfmGA can be explained by better parallelism. Gates pfmGA

demonstrated super linear speedup using 2, 4, and 8 processors [15]. Furthermore,

even when his algorithm was rated as less than linear speedup (+16 processors), Gates'

pfmGA implementation was still achieving 9-fold speedup. The LLGA never achieved

above 4-fold speedup on the ABC Beowulf. The LLGA family suffers from a very closely

matched communications to computations ratio. Therefore, parallelization of this

algorithm does not achieve the anticipated dividends.

From an effectiveness standpoint, again the LLGA family is grossly

outperformed. The most optimal solution generated by the LLGA implementations had

a conformation energy of -18.22 kcal/mole and an RMSD of 17.124 this protein was

uncovered by the pLLGA using 0.241816 as the random seed. The RMSD calculation

66 One master and only two slaves.
103

was performed against the "optimal" QUANTATM [Met]-Enkephalin molecule discussed

in Section 5.1.

Average Execution Time per Processor

140000

Figure 40: Comparison Between Linkage Investigating Gas

6.6 LLGA Observations

Additional observations were made concerning the LLGA's performance that did

not correspond to any of the test cases documented in Chapter 5. Furthermore, these

"observations" were made over the course of the five tests and are considered as

general conclusions concerning the performance of the LLGA implementations.

The first major observation that concerned us greatly is the LLGA's inability to

maintain building blocks (BBs) once they are within the population. The following

figures represent the average number of BBS contained within the population per

generation for the pLLGA.

104

0.14

0.12

0.1

DO
m

0.08
at
£1
E
3

3>0.06
a

S <

0.04

0.02

Average Number of BBs per Individual per Generation

-Series 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generation

Figure 41: BBs Uncovered and Maintained for the pLLGA and Random Seed 1

105

Average Number of BBs per Individual per Generation

0.14

0.12

0.1

c 0.08
o

0) c
0)
« 0.06

0.04

0.02 <1

0#

-Series 2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Average Number of BBs

Figure 42: BBs Uncovered and Maintained for the pLLGA and Random Seed 2

106

0.14

0.12 f

Average Number of BBs per Individual per Generation

0.1

(A
m
m
° 0.08
<5
S3
E
3 z
8>0.06
a> > <

0.04

0.02

-Series 3

500 1000 1500 2000 2500

Generation

3000 3500 4000 4500 5000

Figure 43: BBs Uncovered and Maintained for the pLLGA and Random Seed 3

Figure 41, Figure 42, and Figure 43 show this inability to maintain good BBs

when the BBs are uncovered. Furthermore, Figure 43 is the pLLGA test case that

produced the most optimal overall energy out of all the test cases. As expected due to

the ruggedness of the energy landscape, it is possible to calculate a rather low

conformation energy and have nonrepresentational67 dihedral angles of the protein. The

ability of the cpLLGA to uncover and maintain good BBs is better, but this is only due to

the constrained search space. It is not at all due to any algorithmic difference. Figure

44, Figure 45, and Figure 46 represent the cpLLGA's ability to maintain BBs using the

same random seed as in Figure 41, Figure 42, and Figure 43, respectively.

67 The dihedral angles do not represent the dihedral angles of the QUANTA™ "optimal" solution.
107

Average Number of BBs per Individual per Generation

0.14

0.12

in
m
m

0.1

o
CD

E
3 z

0.08

0.06
D)
n

>
< 0.04

0.02

o -#yiM^

o

-Seriesl

n
1000 2000 3000

Generation

4000 5000

Figure 44: BBs Uncovered and Maintained for the cpLLGA and Random Seed 1

108

Average Number of BBs per Individual per Generation

0.14

0.12

0.1 <l

m
m
o 0.08 -f
a>

E

S) 0.06
n

> <

0.04

0.02

-Series 2

1000 2000 3000

Generation

4000 5000

Figure 45: BBs Uncovered and Maintained for the cpLLGA and Random Seed 2

109

Average Number of BBs per Individual per Generation

0.14 i

0.12

0.1

m
m

° 0.08
a> n
£
3
Z
8)0.06
en

8 <

0.04

0.02 < I

-Series 3 1

1000 2000 3000 4000 5000

Generation

Figure 46: BBs Uncovered and Maintained for the cpLLGA and Random Seed 3

Secondly, it was decided to increase the selective pressure of the LLGA by

changing the selection operator to see if this would increase the LLGA's ability to

maintain good BBs. Therefore, the selection operator was changed to keep the best

parent and the best child form the group of two parents and their two offspring. As can

be derived from Figure 47 and Figure 48, using this selection operator made the

cpLLGA thrash in respects to its ability to finding and maintaining good BBs and

converging to a particular location in the search landscape. Figure 48 shows the

cpLLGA's inability to converge after 5,000 generations (250,051 evaluations). Due to

time constraints, we were not able to execute this test past the 5,000 generation mark.

We presume that the most optimal energy uncovered will not change appreciable

because according to the data the minimum energy had not changed since the 2,500th

generation.

110

Average BBs per Individual per Generation

0.14 -m

0.12-

Seriesl

Figure 47: BBs Uncovered and Maintained for the cpLLGA, Random Seed 3, and

the New Selection Operator

111

Energy per Generation

399999997500

349999997500

299999997500

249999997500

O)

g 1999999975.00
UJ

149999997500-1

99999997500

49999997500

-25.00

-"-maximum

-»- average

rrinirrun

0 500 1000 1500 2000 2500 3000

Generation

3500 4000 4500

1551B07

""•"' -162483
5000

Figure 48: Energy Characteristics of the New Selection Operator

112

Energy per Generation

100.00

75.00 4

50.00

D)

C
UJ

25.00

U„.J
maximum

average

minimum

in ifpär

"wtIC
Ifilü

m
*J i'ipp Hin, p^''-:i»1

Hl Pf !&#" *t,£ »'':• i"5

sifi ^;'iNlß :T-'-.'-",i

If «rlMIJiVJiK ;

II
B

26.473

0.00-

-25.00

15001 Hood 1150011 I2000J 1250011 130001 135001 140001 145001 5d00

-16.2483

Generation

Figure 49: Energy Characteristics of the New Selection Operator (smaller scale)

6.7 Energy Landscape Visualization

Finally, we were able to incorporate 11,189 [Met]-Enkephalin configurations

uncovered by the LLGA into a visualization of the landscape. Figure 50 shows these

points. The first point on the graph in Figure 50 is the first entry of Table 31 and the

last point is the second entry of Table 31. Therefore, Figure 50 can be considered an

energy landscape visualization of the points between

0000000000101010011001001010001011100010001110000110001100011111011101

1101001001000101001111100010110110001101001101011110111100110010101100

113

1011101000100000011011010100010000110110100111111111011010101111000110

101001101000011110101000010000 and

1111111111111110110001110100011101111111001000010000110000111101000001

1101010110001111011101101110001011000100000110001011000011011101000101

0110110000100010111110001111001100010100001101101111011010110011011100

11110101110000010110010101100. Table 32 and Table 33 indicate the dihedral

angles represented by these two molecules of [Met]-Enkephalin.

Binary Chromosome Representation
000000000010101001
000111110111011101
110101111011110011
010000110110100111
1110101000010000
111111111111111011:
001111010000011101
011000101100001101
001100010100001101
0101100101011001

10010010100010111000100011100001100011
00100100010100111110001011011000110100
00101011001011101000100000011011010100
11111101101010111100011010100110100001

00011101000111011111110010000100001100
01011000111101110110111000101100010000
11010001010110110000100010111110001111
10111101101011001101110011110101110000

Energy
919437.230312

72282423.106913

Table 31: Limits of the Landscape Visualization

Dihedral Angle (degrees)
Residue O ¥ CO %i Jte %3 Z4

Tyr -180.000 58.360 -75.938 -119.531 81.562 54.140

Gly 79.453 -100.898 17.227 — — _ _

Gly 167.695 115.664 -150.82 _ _ _

Pho 138.867 -40.430 -104.414 2.109 118.477 _

Met 85.430 159.609 5.62 -161.016 44.648 127.266 -137.109

Table 32: Dihedral Angles for Molecule One of the Visualization

Dihedral Angle (degrees)
Residue 0> V CO Xi %2 %3 %4

Tyr 179.648 172.969 -16.523 114.258 -28.125 165.586 —

Gly 134.649 -133.594 -111.445 — — — _

Gly 112.852 120.234 -93.164 ___ _ — -—

Phe -25.313 68.906 -145.547 16.523 21.094 _

-172.266 Met 94.570 -102.656 -58.711 97.031 -103.008 127.617

Table 33: Dihedral Angles for the Last Molecule of the Visualization

114

Energy Landscape

4500000000

4000000000

3500000000

3000000000

2500000000

><

S2000000000
c
Hl

1500000000 I

1000000000

500000000

0<

-500000000

♦ * ♦ ♦ « ♦ ♦*

Sill^llll
llllllllllll

» ♦ ♦■♦-*-]

* ♦

♦♦ ♦ . ♦ ♦ ♦

— ♦ ♦♦ *- ♦ ♦ -♦ /v* ♦,—*
♦$♦♦♦*♦♦ ♦ * ♦ ♦ ♦

10000 15000 20000 25000 300001

Compressed Chromosome

11350001 140000)1

Figure 50: Energy Landscape Visualization

115

Energy Landscape

25 i. . -;— • —y» « —a? •—" * - »
•

I * m-. * * ♦ * ! *t * • •• • . . . ♦ • .. ♦• • ♦„• • • •. • ; . •• ► ♦

J|||(|§||| .*

20

* • • • • • , * • V t •«. •
•
 »

• ••
f + ♦ *

15-, -,- . . , t -;-»,-.
♦ • *

* ♦

\ ■»■ . «—-

• ♦ «

*

• * •
• •

| # * • • • •.•• •
10 * • » ■■■■* " * p< . , ,— ■■■■■» * illilpplliilslll:

• : A . . . » •• • « •
• • • • •

ifii§iii§i§§
° 1 . ♦ E^^s^i^s^ssm^äBS^^^mS ^^fife^^t

iiÄiiBiii^iiiÄiiÄiii^i * * ^ * •
♦ ♦ •.* #.

>> |||j|||||pj|l|M||||^||=|||^l * . . *• älll^l^llilillillllll • •
O) plil^lll?l^liiMllil|pli^liiiipl||ifeil ■^Ä^Ä^i^^^Mi^^^^BMBi^^^^WP^^
v 0 IlllllPllllSli^ii^lllfill , .—— ~—J- ■ • $i:;i&il|^||li

UJ I) 5000* ' * 10000 15000 * 20000 * 25000 30000 35« XVX 4 ami 45000

-5 ——————— —~~..~ |... —W /^V"— —
•* i V i

1 3- %

-10 s^C;M:;;ataifeiiite<i V: J - W
l^fiipS;

-15-

-20-

-25-

Compressed Chromosome

Figure 51: Condensed Energy Landscape Visualization

Figure 51 is a more limited view of the same energy landscape area bounded

between +25 and -25 kcal/mole conformation energy. The visualization illustrates a

picture of the landscape we did not expect to find. We had anticipated finding certain

segments of the landscape that smoothly dipped into lower energy regions. But Figure

51 clearly indicates that many of the low energy conformations are at the bottom of

steep troughs in the landscape. Furthermore, we must consider that Figure 51 is a 2-

dimensional representation of the true 25-dimensional landscape. Therefore, the widths

of these energy troughs depend on the sensitivity of each independent variable. For

116

instance, if we view the energy trough by pairwise independent variables68 in order to

determine the dependency the relationship represents, we may find that some of the

relationships indicate wide valleys while other relationships between the independent

variables are narrow chasms. The narrow chasms are of great concern to us because

they represent high sensitivity. Any change in the two variables representing the chasm

would trigger an enormous change in the protein's calculated energy. The first and third

circled areas of Figure 51 represent possible deep chasms, whereas the second, fourth,

and fifth circled areas seem to indicate possible wide valleys.

These two figures do represent a "general idea" we have maintained for years.

Basically, that the energy landscape of [Met]-Enkephalin is very rugged. Our

visualizationt emphasizes that the landscape is extremely rugged69 and it suggests the

possibility that the landscape is also irregular. Furthermore, these figures indicate why a

deterministic search method would flounder. Because the landscape is obviously

riddled with low energy values surrounded by steep barriers, a deterministic method

would enter the first low laying region70 of the search space and not be able to escape.

On the other hand, simulated annealing, which in some respects is similar to a

deterministic search, is able to initially escape the first few local minima encountered

because the progressively stronger penalizing function has not become sufficiently

strong enough to anchor the algorithm to any particular local. As the penalty function

increases, there would be more of a tendency to become trapped at the next best local

minima.

6.8 Summary

Chapter 1 presents the objectives for this thesis. This chapter presents

empirical results from the experiments designed in Chapter 5 to meet those objectives.

The performance of the LLGA, pLLGA, cLLGa, and the cpLLGA are compared using

several different efficiency metrics. It is recommended that further test be conducted to

statistically characterize this results71. Finally, a portion of the search landscape was

revealed through our proposed visualization methodology.

68 In this representation the two independent variables would be on the x and y-axis and the
energy of the z-axis.
69 The landscape turned out to be much more rugged then what we anticipated.
70 I.e. find the first local minima.
71 Appendix J discusses possibly methods.

117

7.0 Conclusion and Recommendations

This investigation integrating the Protein Structure Prediction (PSP) problem and

the Linkage Investigating Genetic Algorithms (LIGAs) over the past 18 months involved

literature reviews, re-engineering the LLGA design and source code, uncovering

esoteric aspects of AFIT's CHARMm energy model implementation, designing and

implementing a visualization methodology, and designing and executing the appropriate

experiments. These efforts have culminated in the realization of the goals we set forth

in Chapter 1. The following two sections look at what we were able to conclude, the

contributions from this research and some recommendations for future research.

7.1 Conclusions

Our application of the Linkage Learning GA (LLGA) to the PSP problem resulted

in the conclusion that the LLGA is an inefficient software application shown in Section

6.1. Our analysis clearly indicates that the LLGA does not parallelize as well as past

AFIT GA implementations. This is primarily due to the granularity of the parallelizable

portions of the LLGA algorithm. Furthermore, the effectiveness of the LLGA is worse

than previous implementations. The effectiveness of the algorithm may be increased by

investigating methods to incorporate building block information. We understand from

our re-engineering of the LLGA source code that the LLGA does not explicitly use the

information gained by comparing the chromosomes of the population to the building

block template. Therefore, the LLGA is basically accomplishing additional

comparisons/calculations that are unnecessary and lead to additional computational

overhead without benefiting the search process.

The algorithmic contribution of the LLGA is its ability to overcome the disruptive

effects of crossover. LLGA accomplishes this task by the inclusion of introns into the

chromosomal representation. But, again, our research has shown that as we moved

from small contrived academic problems to complex real-world applications the number

of introns required by the LLGA explodes! This indicates the LLGA has an inability to

scale to larger problems, which severely hampers its usability in real-world applications.

As the number of introns grows the LLGA's search for the canonical form takes an

increasingly larger toll on the computational performance of the algorithm. Again, this

puts a damper on our desire to recommend the use of the LLGA in large real-world

118

applications72. Furthermore, in our experiments we used 19 times more introns than

exons and we were still unable to maintain good building blocks (i.e., cancel the

disruptive effect of crossover). This is discussed in Section 5.3 and Section 6.6.

On the other hand, our attempt to include problem domain constraints directly

into the decoding of the chromosome shows great promise. The additional computation

overhead of this scheme is negligible! Furthermore, this transformation process does

not lead to "islands of feasibility" where the GA becomes trapped as it did for Kaiser

[37]. See Section 6.3 and Section 6.4. Our testing has shown the cpLLGA is better at

uncovering and propagating building blocks. Shown in Section 6.6.

Finally, our novel approach to visualizing the PSP landscape traversed by any

GA shows an ability to gain insight into both the algorithmic processing and the possible

energy landscape structure of the specific protein in question. Insights gained so far

from our limited instantiated visualization has substantiated our current notation that the

PSP energy landscape has an extremely rugged and irregular domain. The

visualization of the landscape is shown in Section 6.7.

7.2 Contributions

The general conclusions drawn from this research lead to the following

contributions to the algorithm domain and the PSP problem domain. The key products

produced as part of this thesis effort are:

1) An ineffective and inefficient building block propagating GA when applied
towards the PSP problem.

2) An insightful solution space visualization methodology.
3) An effective and portable PSP search space-bounding function that can be

incorporated into any GA.

7.3 Recommendations

Our recommendations for future research efforts lie in modifying the LLGA,

incorporating more problem domain information into the process in order to further

constrict the search space, and redirection of our primary focus.

Modifying the LLGA algorithm is a possibility for future research. The LLGA

chromosomal data structure could be re-engineered to make use of the information

72 For our 240 bit chromosome the LLGA required 4650 introns for a crossover disruptive
probability of 0.05%.

119

gleaned from the building block template. A possible way to do this is by adding a

weight to the chromosome that accounts for the inclusion of a building block within the

canonical form. This would increase the LLGA's ability to recognize building blocks

within chromosomes of the population and maintain this information. This concept is

similar to the infected genes evolutionary algorithm [86].

For the PSP problem domain, we recommend further research into the

applicability of constraints beyond Kaiser's work [37]. The search space for the PSP

problem constrained solely by Ramachandran constraints is still enormous! But there

are other avenues of constraints, which could be included into our model such as affinity

to form hydrophobic or hydrophilic structures, side-chain placement strategies, and

stehe constraints. These "other" constraints could lead to an even smaller, yet still

intractable, search space.

Furthermore, AFIT's model needs to be validated against larger molecules.

Current and past research has focused on small proteins73, but AFIT has yet to show

that the combination of any genetic algorithm and the AFIT's CHARMm energy model

can handle larger proteins consisting of hundreds of residues. This research should

provide additional insight into the general applicability of GAs to the PSP problem.

Finally, there are often conflicting methods for calculating a protein's tertiary

structure. These different methods could be employed in a multi-objective approach to

afford the biochemist greater insight into the PSP problem. Table 34 indicates possible

secondary fitness functions:

Category Characteristic
Electromagnetic Energy transfer or reflection
Entropy Information content and (dis)order
Environmental Environmental benefit or damage
Geometrical Structural relationships
Physical (Energy) Energy emission or transfer
Physical (Force) Exerted force or pressure

Table 34: Possible Fitness Functions

73 [Met]-enkephalin is a pentane.
120

Appendix A. Background on the Protein Folding and Protein
Structure Prediction Problems

This appendix contains background material on the protein folding and protein

(or polypeptide) structure prediction problems, most of which has been presented in

previous AFIT theses, particular those of Brinkman (18) and Gates (15). Section A.1

defines terminology in the biochemistry domain. Section A.2 describes the expensive

experimental techniques used to determine the structure of proteins. Finally, Section A.3

examines various models used to predict the structures of polypeptides and proteins.

The protein folding problem (PFP) has been recognized as a National Grand

Challenge problem in biochemistry and high-performance computing (11). The

challenge is to find a method to predict the three- dimensional geometry of a protein

based on the sequence of its components. A solution, which would provide knowledge

about the function(s) of individual proteins, is also the first step toward solving the

inverse protein folding problem (IPFP) (8, 71). The goal of the inverse folding problem is

to determine a sequence (possibly more than one) that folds to a specified three-

dimensional structure.

The difference between the two problems is best characterized by the capability

that their solution would provide. A PFP solution would enable the evaluation of many

proteins in a search for one with a specific property or function. In contrast, an IPFP

solution would provide a direct mechanism to design a protein with specified

characteristics (8:25-26). Possible applications include: pharmaceuticals with few or no

side effects; energy conversion and storage capabilities (similar to photosynthesis);

biological and chemical catalysts and regulators; angstrom scale information storage;

and possible optical/chemical shielding from harmful radiation sources (8:25) (71:5)

(93).

A.1 Introduction to Proteins and Associated Terminology

Proteins (polypeptides) are linear sequences of the 20 naturally occurring amino

acids. Each amino acid consists primarily of three common backbone atoms (a nitrogen

and two carbons [N-Ca-CY] bonds, called the side-chain (Sj), connected to the Ca carbon

atom. A particular protein is defined by its unique amino acid sequence, which is known

as the primary structure of the protein (8:24)(71:2)(69:49).

121

As the amino acids form into proteins via peptide bonds, they give up a water

molecule. The linked amino acids are called residues. Figure 32 depicts a generic

protein composed of three residues (amino acids). In most contexts, the terms amino

acid and residue are used interchangeably. The primary structures of approximately

50,000 naturally occurring proteins are currently known and this number is expected to

double every year, due largely to the Human Genome Project and the ease with which

sequences are experimentally determined (71:5)(91). In fact, the sequence

determination and also fabrication is fully automated.

Subsequences of proteins tend to exhibit regular patterns. Two common patterns

are oc-helices and ß-sheets. These describe the secondary structure of a protein (8:24).

Secondary structures result only when at least four or five consecutive amino acid

residues have similar <\> and y values (57). Some researchers are investigating the utility

of predicting secondary structure as the first step of tertiary structure prediction (69:50).

This technique has had limited success. The problem is that even though certain

residues are found more frequently in a specific secondary structure, the greatest

preference is only twice that of other secondary structures. In most cases, the

preference is much smaller (108:422). Table 22 identifies the values for ((j), \\r) angle

pairs that according to Horton (57) ideally define commonly occurring secondary

structures.

Secondary Structure Phi (0) Psi (y)
a-helix (right hand) -57 -47
a-helix (left hand) 57 47
3io Helix (right hand) -49 -26
Antiparallel [3-sheets -139 235
Parallel ß-sheets -119 113
Collagen Helix -51 153
Type II turn (second
residue)

-GO 120

Type II turn (third residue) 90 0
Fully extended chain -180 -180

Table 35: Phi & Psi Pairs of Common Secondary Structures

The three-dimensional structure of a protein is the major determinant of its function. This

three-dimensional shape is called the tertiary structure or conformation of the protein.

Proteins assume their native conformation, which is unique and typically compact, in

their natural biological environment (typically in aqueous solution, at neutral pH and

122

20—40° C) (8, 71). A protein in its native conformation is only slightly more stable than

the various conformations with marginally higher energies. Normally, there is only a 10

kcal/mol energy difference between the completely folded and unfolded conformations.

This single fact is responsible for the major difficulty of the protein folding problem (8:24-

-25) (71:2~4) (69:50).

There are two principle coordinate systems frequently used to identify the

position of the atoms in a molecule. The Cartesian coordinate system uses a three

dimensional coordinate (Xi; y; Z|), 1 < i < n, where n is the number of atoms in the

molecule. An arbitrary atom, usually Ca1 is assigned to the origin. This system is most

useful to compute the distance, dtj = ■^](xi-xj)+(yj -yj) + (z, - z}) between two

atoms. With this system each molecule has 3n degrees of freedom.

Internal coordinates is the other coordinate system. The dihedral angle

approach defines position of all atoms in a protein from the position of one atom (usually

at the origin), the bond length of each covalently bonded pair of atoms, the bond angle

formed by each triplet of bonded atoms, and the dihedral angle formed by each bonded

group of four atoms (see Figure 56, Figure 57, Figure 58). Given this set of

parameters, every protein has 3n-6 degrees of freedom where n is the number of

atoms. However, the bonds and bond angles are relatively rigid, therefore the

independent dihedral angles are left as the only dominant factor to determine the tertiary

structure of a protein. Hence, the degrees of freedom are effectively reduced by a

factor of approximately 2/3 (8:26) (69:50).

Each amino acid contains a <|), vj/, and co dihedral angles and zero or more %\

dihedral angles as shown in Figure 1.

If we discretize the domain of the dihedral angles so that there are d possible

values, then the size of the search space is given by dN where N is the number of

independently variable dihedral angles. Given a very coarse 20° discretization of the 0 -

360° and a small protein with 24 independently variable dihedral angles, the search

space contains 1824 ~ 1.3x1030 conformations. Table 23 shows the time required to

enumerate the search space on current and envisioned high performance computers

(under the optimistic assumption of one evaluation per clock cycle) (107:7)! (Giga-,

Tera-, and Peta-FLOP computers perform 10 9 ; 10 12 , and 10 15 floating point

operations per second, respectively) Therefore, if we hope to find the single native

123

conformation of a protein, we must have access to efficient search algorithms that

severely prune the search space.

Computer Speed
1 GigaFLOP
1 TeraFLOP
1 PetaFLOP

Execution Time (years)
41 trillion
41 billion
41 million

Table 36: Enumeration Time of 1.3x1030 Search Space at One Solution per Clock
Cycle

124

Appendix B. Current Methods for Protein Structure Prediction

B.1 Introduction

A protein consists of a sequence of amino acids. Each acid is identified by an

attached sidechain [18]. A single sidechain group is a rigidly connected sequence of

atoms commonly referred to as a "peptide unit" or a "residue" [19]. Each residue is

read left-to-right beginning with the amino and ending at the carboxyl terminal [19] (see

Figure 1). The sequence of amino acids, joined together by peptide bonds (i.e. several

peptide unit or residues represented as a 1-dimensional model), form the basis for what

is referred to as the primary structure of a protein. These structures help us to

understand the chemical configuration of the protein, but the biological role of a

particular protein is defined by its tertiary structure [20]. The atomic forces interacting

between the atoms within the protein molecule form the tertiary structure. The tertiary

structure is a twisted, grooved, helixed, sheeted, and creviced 3- dimensional structure.

It is these crevices and grooves of a protein's complex folds that allow the protein to

attach to other molecular structures and define its function [20]. Within these twisted

and tangled structures are regularly occurring patterns called secondary structures.

Secondary structures are believed to be the stepping stones in the process of folding a

protein [22]. The secondary structures are classified either as right- or left-handed

alpha helices, beta-sheets, or random coils [21]. It is the final tertiary structure that is of

utmost importance to biochemists and this state is called the natural molecular

conformation. The protein folding problem can, therefore, be described as searching for

this natural conformation state given only the primary structure of a protein. Knowing

the structure of biological molecules allows scientists to better understand how they

work and can lead to better drugs and treatments for disease.

B.2 Practical Methods for Calculating a Protein's Native Structure

In order to understand and manipulate proteins, we must be able to reliably

predict the tertiary structure of the protein in a reasonable amount of time. Generally,

there are three different methods to determine the conformation state of a protein: X-ray

Crystallography, Nuclear Magnetic Resonance, and Computational Models. X-ray

crystallography and nuclear magnetic resonance spectroscopy are direct methods of

125

measuring the position of each atom within a protein. These methods are extremely

time consuming and laborious! Computational modeling, on the other hand, is

somewhat less time consuming and easier to conduct, but these methods are

approximations and may not precisely reflect the native structure of a particular protein.

Although, computational modeling has many shortcomings, it is still the greatest area of

interest to biochemists because this form of calculating the native structure provides the

greatest possibility of shortening the gap between the discovery of a new protein and

learning its conformational structure. This section provides a brief overview of the x-ray

crystallography and nuclear magnetic resonance spectroscopy, and an in-depth look at

several different forms of computational modeling.

B.2.1 X-ray Crystallography

Scientists have used X-ray diffraction patterns since the early part of this century

to aid their studies of molecules. X-ray crystallography was the first technique to reveal

the precise 3-dimensional position of most of the atoms in a protein. In order to

understand how x-ray crystallography works, we must remember that an atom consists

of a nucleus surrounded by electrons. The electrons scatter the x-rays in all directions.

The intensity of scattering from a given atom is dependent largely on the number of

electrons present, and can be thought of as a fingerprint for a particular element by the

"atomic scattering factor" [27]. If a periodic array of atoms is present, constructive and

destructive interference patterns result. This observed diffraction only is seen in certain

directions and for a given orientation of the periodic array with respect to the x-ray

source. Since crystals consist of molecules arranged periodically, a crystal acts as a

nearly perfect diffraction grating for the x-rays [27]. In order to "see" an object, its size

has to be at least half the wavelength of the electromagnetic radiation being used to

view it [28]. Therefore, the x-rays routinely used in crystallography have wavelengths of

0.7 to 1.7 Angstroms [27].

126

The simplified steps to this procedure are as follows [22]:

1) First, crystals of the protein of interest are needed. NOTE: The quality of the
crystal determines the ultimate resolution of this analysis.

2) The protein crystal is mounted in
a capillary and positioned in a
precise orientation with respect to
the x-ray beam and film. Precise
motion of the crystal results in an
x-ray photograph consisting of a
regular array of spots. (See
Figure 52.).

Figure 52: X-ray Diffraction Pattern for
protein Lac Repressor [27]

3) The intensities of the spots are
measured. These intensities are
the basic experimental data of
the analysis.

4) Next, the image of the protein is
reconstructed by applying a
Fourier transform, and a
electron-density map is created.
The electron-density map gives
the density of electrons at a large
number of regularly spaced
points in the crystal. (See
Figure 53.)

Figure 53: Electron Density Map [29]

5) Finally, the electron-density map
is interpreted.

A resolution of 6 Angstroms (Ä) reveals the

positions of the atoms in the backbone, but

few other structural details. This is because atoms that comprise the polypeptide

backbone are centered 5 and 10 Ä apart. Maps at higher resolutions are needed to

delineate groups of atoms that lie from 2.8 to 4.0 Ä apart, and individual atoms that are

between 1.0 and 1.5 Ä apart [22].

,.-

■iÄäsk- r^J*

'^fwASw '^ISSlP[

»Sv
iJSsEnl

£.';
a o,i te as <w <XJ on

 l;.;.„r J 1 t l„l .t,.l„ ! 1

127

B.2.2 Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy was made possible by Felix

Bloch and Edward Purcell in 1952. Until then, magnetic resonance was a measurable

phenomena in which atoms were shot through a magnetic field as a beam [23]. I.I.

Rabi laid this groundwork in the theoretical properties of NMR research, but it was Bloch

and Purcell's development of NMR instruments that could measure this phenomena in

bulk materials such as liquids and solids that open up the door for using NMR as a

means to measure the natural state of proteins [23]. NMR spectroscopy is based on the

measurement of the absorption of electromagnetic radiation in the radio frequency

region between 4 and 750 MHz [24]. A simplified description of this technique follows:

1) The sample is submitted in a deuterated solvent and transferred into the
NMR tube.

2) The tube is placed into a magnetic field.
3) A radio frequency pulse is then sent through the sample solution in order to

orient the magnetic moments of the nuclei in the solution.
4) As the magnetic moments relax, they exhibit a free induction decay with time.

The sample eventually relaxes to its equilibrium state.
5) The free induction decay is Fourier transformed into a NMR spectrum.

The relaxation process is highly informative about the macromolecular structure and

dynamics because they are highly sensitive to both the geometry and motion [22]. The

NMR spectrum displays the chemical shifts for the individual nuclei; and from these

shifts, the structure of the compound can be determined [25]. A sample spectrum

display is provided in Figure 54:

128

Broadband decoupled C-13 NMR of p-methoxybenzaldehyde

.1
n

c
e

t o
n f

s ?
i e CH3

t
y

h d
f

wv^vmw
1

•fWWVVVW wvwvwvv /VVWWVVV WfVWWW iWAWW/ /VWWVVW wvwww flftWlWW wwwwv w

200 180 160 140 120 100 80
 Chemical Shift ^)

60 40 20 0 ppm

Figure 54: Sample 1D NMR Spectrum [26]

NMR spectroscopy is one of the most powerful tools available to chemists and

biochemists for the elucidation of the structure of both organic and inorganic specimens.

B.2.3 Computational Models

Computational engines are used to calculate molecular energies and properties

associated with these energies [30]. There are three major classes of computational

engines: 1) Empirical, 2) Semi-Empirical, and 3) Ab Initio. Previous AFIT research on

the PFP problem has centered on using semi-empirical engines. Therefore, the

following discussions covering these three forms of computational engines will provide

more depth and analysis into a particular semi-empirical method (i.e. the CHARMm

energy model), but since one of the objectives of my thesis effort is attempting to use a

secondary objective function when solving for the native state of the protein, additional

information for a particular empirical method will also be presented (i.e. Schrodinger's

Equation).

B.2.3.1 Empirical

Empirical methods use principles founded in molecular mechanics to describe

molecular energetics in terms of a set of classical potentials. Molecular mechanics

models are based on the following assumptions [31]:

129

1) Nuclei and electrons are lumped into atom-like particles considered rigidly
spherical and having some net charge.

2) Interactions are based on springs (representing bonds between atoms) and
classical potentials (representing forces between non-bonded atoms).

3) Interactions must be pre-assigned to specific sets of atoms.
4) Interactions determine the spatial distribution of the spherical atoms and their

energies.

The objective of these molecular mechanics models is to predict the energy associated

with a given conformation of a particular molecule. However, these energies have no

meaning as absolute quantities (i.e., there is no "right" reference energy); only

differences in energy between two or more conformations of a particular atom have

meaning [31]. In other words, we cannot conduct a straight comparison between two

conformations evaluated using different models nor can we adequately compare two

different molecules using the same energy model.

B.2.3.1.1 Anatomy of a Molecular Mechanics Force-Field

A simplified molecular mechanics energy equation is:

Energy = Stretching Energy + Bending Energy + Torsion Energy + Non-
Bonded Interaction Energy

Equation 24: Simplified Semi-Empirical Energy Equation

These potential functions and the data used for their evaluation are collectively called a

"force-field" [30]. Separate potential functions are used to calculate bond stretching,

angle bending, bond twisting energies, and non-bonded interactions. (See Figure 55.)

130

Figure 55: Overview of the Mechanical Molecular Model Forces

B.2.3.1.1.1 Bond Stretching Energy

The energy due to bond stretching (Figure 56) is based on Hooke's Law (see

Equation 25).

Figure 56: Bond Stretching

E = I k. (r - r)i
bonds b °

Equation 25: Bond Stretching
Energy

where, Kb controls the stiffness of the bond spring, and r0 defines the equilibrium
bond length [30].

Unique, Kb and rQ parameters are assigned to each type of bonded atom pair (e.g. C-C,

C-H, O-H, etc.) [31]. The Bond Stretching Energy estimates the energy associated

with the vibrations about the equilibrium bond length [31]. This model tends to break

down as the bond is stretched to the point of dissociation.

131

B.2.3.1.1.2 Angle Bending Energy

Bending energy () is also based on Hooke's Law. (See Equation 26.)

Equation 26: Angle Bending Energy

where, K controls the stiffness of the
angle spring, and 0 defines the
equilibrium angle [30].

Figure 57: Angle Bending

The angle bending energy equation estimates the energy associated with the

vibration about the equilibrium bond angle [31]. Unique parameters for angle bending

are assigned to each type of bonded triplet of atoms (e.g. C-C-C, N-C-C, C-C-H, etc.)

[31]. The larger the value of "ke," the more energy is required to deform an angle from

its equilibrium value by a given amount.

B.2.3.1.1.3 Non-Bonded Energy

Non-bonded energy represents the pair-wise sum of the energies of all possible

interacting non-bonded atoms (/and j) within a molecule. This equation accounts for the

van der Waals attractions and repulsions, as well as electrostatic interactions [31]. Van

der Waals attractions occur at short ranges between atoms, and rapidly die off as the

two atoms move apart by just a few angstroms [31]. Repulsion occurs when the

distance between interacting atoms becomes slightly less than the sum of their contact

radii [31]. Repulsion counteracts the effects of the van der Waals attraction, and is

modeled by a function that is specifically designed to rapidly explode at close distances.

The electrostatic interaction term serves to describe the smooth transition between

these two regimes [31].

132

Equation 27: Non-bonded Energy
Equation

where, A can be obtained from atomic
Figure 58: Non-bonded Interaction polarization measurements or quantum

a mechanical calculations, B is derived
from crystallographic data of observed
contact distances between different
kinds of atoms, and the electrostatic
term is modeled using a Coulombic
potential [30].

The A and B parameter control the depth and position of the potential energy well for a

given pair of non-bonded interacting atoms (e.g. C:C, 0:C, 0:H, etc.) [31]. In effect, the

A term determines the degree of stickiness of the van der Waals attraction, and B

determines the degree of hardness of the atom (i.e. marshmallow-like, billiard ball-like,

etc.) [30].

B.2.3.1.1.4 Torsion Energy

Torsion energy is primarily used to correct the remaining energy terms rather

than to represent a physical process or molecular property [30]. The torsion energy

equation represents the amount of energy that must be added/subtracted from the

Bond Stretching Energy + Angle Bending Energy + Non-bonded Energy Equation

terms to make the total energy agree with experimental or quantum mechanical

calculations for a model of dihedral angles.

133

E = S A [1 + cos(m - 4>)]
torsions

Figure 59: Torsion Energy _ *.„„,..,- 3 Equation 28: Torsion Energy
Equation

Unique parameters for torsion rotation are assigned to each type of bonded quartet of

atoms based upon their types (e.g. C-C-C-C, C-O-N-H, N-C-C-N, etc.) [30].

B.2.3.2 Semi-Empirical

Semi-empirical methods are rooted in quantum chemistry, which describes

molecular energies in terms of explicit interactions between electrons and nuclei.

Quantum mechanics methods are based on the following assumptions [33]:

1) Nuclei and electrons are distinguishable from each other.
2) Electron-electron and electron-nuclear interactions are explicit.
3) Interactions are governed by nuclear and electron charges (i.e. potential energy)

and electron motions (i.e. kinetic energy).
4) Interactions determine the spatial distribution of nuclei and electrons and their

energies.

The theoretical foundation of quantum chemistry starts with de Brogue's [31, 33]

concept (sub-atomic particles display wave-like properties), but it was Schrodinger that

made the connection between classical waves and de Brogue's particle waves [33].

Schrodinger used the concept of a standing wave to quantitatively describe particle

waves. The mathematical description of this wave is called a wavefunction.

Properties of a wavefunction describe the kinetic and potential energies of an

electron in a region of space surrounding the nucleus. These properties are obtained by

applying a Hamiltonian operator to the wavefunction. This generates the wavefunction

(¥) and its corresponding energy (E). Schrodinger's equation (see Equation 29) can

134

be solved for *P and E. Schrodinger's equation addresses "where are the electrons and

nuclei of a molecule in space?' and "what are their energies?' [33].

V2V = -(2n/[h/2m(E-V)1/2])2Y = -(87t2m/h2(E-V)Y

Equation 29: Schrodinger's Equation

This can be rearranged by a series of algebraic steps into:

(-h2/8;r2 m)V2V = (E- V)Y

(-h2/8*2 m) V2V = EV- -W

(-h2/to2 m)V2V + W = EV

[(-h2/8^: 2m)V2 + V]V = = EV

LetHs [(-h2/8^2m)V: 2+V]

Equation 30: Reduction of Schrodinger's Equation

where h is Planck's constant, m is the mass of the electron, V is the Laplacian operator

~\2 -\2 -\2

(i.e. V2 = —- + —- + —-), and Vis the potential energy of the electron [34].
dx2 dy dz

Resulting in the following simplified form, which the Schrodinger's Equation is usually

represented as:

HW = EV;
Equation 31: Simplified Schrodinger's Equation

where Yis the waveifunction and E is the total energy of the electron.

Schrodinger's Equation works for hydrogen and hydrogen-like atoms, but when

two or more electrons are in the atom's valance shell they not only interact with the

protons in the nucleus, but also other electrons [34]. This equation becomes more

complex for describing a multi-electron atom due to the electron-electron interactions

(electron correlation) and an additional property called "electron spin" [33, 34, 35], but

the effects can be approximated under the assumption that each electron-nuclear

135

interaction is screened by the average of all electrons. This leads to Schrodinger's

Equation for a molecule:

electron

H-K-tf/siAn^iv2!

i=Lk-l l=l+l,k

electron-nucleus

ZW
j=l,N i=l,k

2 ZJ Z»/Rj.n
j=l,N-l rcH+l,N

\ electron-electron i nuclei d nucleus
Equation 32: Schrodinger's Equation for a Molecule

This equation is constructed from a set of one-electron wavefunctions

contributed by each atom. This approximation technique considers the nuclei to be

stationary relative to the motions of the electrons [33]. The major difference between

computational methods that use Schrodinger's Equation as a basis for calculating the

molecular energies pertains to their consideration of the electron correlation [33].

B.2.3.3 Ab Initio

The difference between Ab Initio methods and empirical methods is that ab initio

methods use the complete form of the Fock operator to construct the wave equation

[30]. The decision to use the complete Fock operator makes this form of calculations

computational impractical except for when dealing with the smallest of molecules. The

Fock-operator is presented here for completeness (Equation 33) [32]. It is expressed in

terms of the one-electron Hamiltonian h (equation), the Coulomb operator Ja

(equation), and the exchange operator Ka (Equation 34).

/(n) =
A'/2

-JM* I))

Equation 33: Fock Operator

136

Hn) = -lM-Jt
>t=l

ljÄ(n) = /,^r^(r2)1-^-1^r2)

J^(ri)^(ri) [y^r^H
ri-rali

r^(r2) $«(T1,

Equation 34: Hamiltonian, Coulomb, and Exchange Operators

The minimum energy can be calculated using the A//2 spatial orbitals with the lowest

eigenvalues E,,£2, ... , £N/2. However, the total electronic energy is not just the sum of

these N/2 eigenvalues. The correct expression for the energy is

I 1

Equation 35: Minimum Energy Equation

where the terms in {) are defined as:

Vi2 J J |ri -ra|

Equation 36: Definition of Matrix Elements

The problem of finding solutions for this time independent Schrodinger equation is now

reduced to finding solutions of the eigenvalue equation called the "Hartree-Fock"

equation (Equation 37).

Equation 37: Hartree-Fock Equation

The only remaining problem with using Hartree-Fock Equation to solve for the

conformation state of a protein is that it has an infinite number of solutions [32].

Therefore, the next step is to expand the spatial orbitals in a finite set of known basis

functions:

137

K

^i ..,K K>N/2

Equation 38: Spatial Orbitals

The orbitals N/2+1... Kare the "unoccupied" two-electron states [32]. The coefficient

Cßi is unknown and still has to be determined. A straightforward application of this

expression to the Hartree-Fock Equation leads to a system of algebraic equations

called the Roothaan Equations:

FC= SC s
Equation 39: Roothaan Equations

All the symbols in this equation are Kx K matrices. The matrix e is a diagonal

matrix with values £i.. .ei<. The matrix C has the elements C^. The "overlap matrix" (S)

and the "Fock matrix" (F) have elements defined by

S^ = /"dri^trO^rO

Fp, = y'dr1^(r1)/(r1)1Mri;

Equation 40: Overlap and Fock Matrices

The expressions for F^ can be expanded, but it still leaves us with the problem of

solving a system of nonlinear equations. This non-linearity arises because the Fock

operator depends upon the coefficients C^(F=F(C)). The only possible way to solve this

equation takes the form of iterating the equations until a solution to Equation 35:

Minimum Energy Equation does not change within some specified accuracy between

two successive iterations, but convergence is not guaranteed [32]. The order of

complexity for this set of equations is determined by the calculation of the two-electron

1
integrals U^

'12

(j)v(j)x), and will generally consume the most processor time because

of their large number (0
8

unique integrals) [32].

The whole process is summarized as [32]:

1) Write down the Schrodinger equation for the system.
2) Use Slater determinant, containing molecular orbitals as the wave function.
3) Obtain the nonlinear Hartree-Fock equations by us of the variational principle.

138

4) Introduce a finite basis set to obtain the algebraic equations.
5) Try to solve theses equations using an iterative approach.

B.3 Summary

The three computational methods empirical, semi-empirical, and ab initio vary in

their ability to accurately model a molecule at the atomic level., but other just as

important properties of these three methods must be considered prior to choosing a

particular method for inclusion into a computational engine for solving the Protein

Structure Prediction Problem. The "practical" differences are listed in Table 1.

139

Appendix C: Parallelization Techniques

Ever since conventional serial computers were invented, their speed has steadily

increased to match the needs of emerging applications. However, as we approach the

fundamental physical limitation of a serial computer imposed by the speed of light, it is

increasingly costly and difficult to achieve further improvements in the speed of a single

processor computer [37]. Therefore, more and more scientists have turned to parallel

computers in the hopes for faster execution of computationally intensive applications.

A major stumbling block in parallel computing is the difficulty in conceptualizing

parallel approaches to problem solving. People tend to think of problem solutions in a

sequential fashion, but sequential (serial) solutions to problems rarely transform into

quality parallel solutions. There are two major concerns when parallelizing any

algorithm:

1) Is the parallel algorithm correct? (Effectiveness)
2) Is the parallel algorithm faster than the serial version? (Efficiency)

Correctness is an issue because there is greater difficulty in verifying correctness of

parallel algorithms than sequential algorithms [36, 37]. If we assume the algorithm is

correctly implemented, then speedup becomes the primary issue and goal of

parallelization. A trade-off analysis is generally required to determine if the estimated

benefits warrant the expenditure of resources to parallelize an algorithm. There are

several different techniques and software utilities that can help us understand

parallelization trade-offs as we develop parallel applications.

C.1 Decomposition Techniques

Data and control decomposition are alternate means to dividing a serial

algorithm into portions that can be performed simultaneously. In general, data

decomposition allows for data parallelism, and control decomposition enables a parallel

programmer to parallelize the control of an algorithm {controlparallelism). In data

parallelizable algorithms, many data items are subject to identical processing.

Assigning data elements to various processors, each of which performs identical

computations on its data, parallelizes such problems [36]. On the other hand, control

parallelism refers to the simultaneous execution of different instructions. These types of

140

parallelized programs can either be executed on the same data stream or on different

data streams [36]. In either case (data or control decomposition) the results are

combined in some fashion to obtain the final solution.

Genetic algorithms (GA) are highly data parallelizable. Parallelizing a GA is as

simple as running multiple copies on separate populations (using a different random

seed) and processors then choosing the best result from all the runs. Data

parallelization techniques are also amenable to static load balancing because their

computation and communication patterns are regular [15]. Historically, AFIT has data

decomposed the Protein Structure Prediction (PSP) problem, but this is not to say

control parallelism is impossible.

Several years ago, Charles Brooks and Bill Young developed a heterogeneous

version of CHARMm (a computational engine used in the search for an answer to PSP

problem) which tackled the intense computational demands of simulating a protein

surrounded by water [38]. This approach took advantage of the data parallelism nature

of the problem (i.e., computations for the water molecules are independent of the

others) [38]. Their newest implementation of CHARMm is a distributed version

executing on the CRAY T3D and C90 (coupled). This version has already shown two to

three times the speed-up over previous implementations, which were hampered by

communications overhead [38]. Furthermore, this version not only takes advantage of

data decomposition it also takes advantage of task decomposition by assigning the

water molecule interactions to the C90 vector supercomputer [38] and using pipelining

principles.

C.2 Scheduling Strategies

Once we have decomposed our algorithm into "manageable" tasks, we have to

schedule these tasks for execution on a particular computer architecture. This

scheduling problem boils down to resource allocation decisions consisting of placement

and assignment. Placement is simply defined as - "where to locate code and data in

physical memory [43]?" Assignment, on the other hand, tries to answer the question of

"which processor will execute each task [43]?" There are two general ways to answer

these questions: static scheduling and dynamic scheduling.

Static scheduling assigns the tasks to the processors prior to program execution

using task weights and processing resources. The tasks will always execute on the

141

processor on which they were assigned [43]. Of course, the quest for an "optimum"

schedule is NP-complete. However, there are several sub-optimal techniques that have

been shown to work quite well. Alas, static scheduling is not as portable as dynamic

scheduling nor is it guaranteed to work on the same architecture over time if the

platform's configuration is unstable.

Dynamic scheduling, on the other hand, is best when very little prior knowledge

is available about the resource needs of the tasks and when we are not sure where the

program will execute during its lifetime. Dynamic schedules are either adaptive or non-

adaptive. Adaptive schedules change dynamically in response to shifting system

loading [43]. Non-adaptive schedules do not. Even though they support greater

portability across architecture platforms, there is an associated cost. Dynamic

scheduling entails execution time overhead cost(s) for determining the schedule. A

trade-off analysis is called for to determine which scheduling strategy would be best for

any particular algorithm instantiation.

C.3 Load Balancing

Load balance goes hand in hand with scheduling strategies. In load balancing,

we are trying to distribute the workload from the heavily loaded processors to the lightly

loaded processors with the purpose of improving the overall performance of the system

[43]. Load balancing algorithms consist of three components: information policy,

transfer policy, and placement policy. The information policy specifies the amount of

load and task information made available to the task placement decision maker(s) and

the way this information is distributed [43]. In short, we are answering the question of

"how do we know the task load has become unbalanced?' The second component

determines the suitability of a job for load transferring. The transfer policy is trying to

answer the question of "which task will we transfer?' It is usually based on the load of

the host processor and the size of the task [43]. The third and final component - the

placement policy - answers the question of "where do we put the transferring task?'

There are many placement schemes (e.g., round robin, closest neighbor, least loaded,

etc.).

Load balancing can either be accomplished prior to program execution - static

load balancing - or during program execution - dynamic load balancing. There are

many ways to accomplish either static load balancing or dynamic load balancing. A

142

trade-off analysis should be accomplished to determine which strategy best suits your

program and target architecture. Static load balancing tends to be easier to implement

(if enough information is available a priori), and in some cases it can achieve an

"optimal" balancing. On the other hand, dynamic load balancing performs better when

the characteristics of the program or the topology of the target computer architecture

change significantly over time in a way we cannot easily predicate, but we will pay an

overhead price for dynamically balancing the program load. Appendix D looks at those

scheduling and load balancing schemes we have analyzed for the problem-algorithm

integration.

C.4 Introduction to UNITY

Chandy and Misra proposed an architecture independent method for the

description of an algorithm - UNITY (Unbounded Nondeterministic Iteractive

Transformations) [39]. A UNITYspecification describes the requirements for a process

not the "how" of the process [39]. The UNITY approach embodies three important

concepts:

1) high-level, explicit expression of parallelism,
2) extrication of proofs from the basic program design, and
3) mapping of the initial design to a specific parallel architecture while maintaining

correctness.

C.4.1 Explicit Expression of Parallelism

The UNITY approach isolates the program designer from the specifics of a given

parallel architecture. The resulting description is strong on "what," and says practically

nothing about "when" or "how" [39]. Design decisions forced by the target architecture

are postponed until late in the design process. This approach helps the designer extract

all the inherent parallelism of an algorithm and to implicitly define decomposition options

[39]. A high-level UNITY specification is written as a series of assignment statements

capable of being executed in parallel. Using this product, the designer can then

examine in detail the complexity of each independent piece of the program.

Table 37 discusses the principles which form the basis of parallelism within a

UNITY design [39]:

143

Non-Determinism - A UNITY specification is a set of executable
assignment statements, and under this concept each statement is executed
infinitely often (The Fairness Rule).

Absence of Control Flow - UNITY specifications do not specify control
flow. Divorcing control flow from program construction allows for greater
flexibility in mappings to different parallel architecture.

Synchrony and Asynchrony - The UNITY language supports synchronous
and asynchronous assignment of variables.

States and Assignments - All UNITY specifications are composed entirely
of states and assignments. Progression from state-to-state takes place
through parallel or sequential assignment of variables. This principle
supports the extraction of proofs from UNITY specifications.

Table 37: Principles of UNITY

C.4.2 Extraction of Proofs

Using a combination of standard logic operators and special temporal logic

operators, a proof of program correctness is extracted from the high-level UNITY

specification. This is the power of the UNITY design approach. This is a great step

forward in answering the first question proposed earlier (Section Error! Reference

source not found.): Is the parallel algorithm correct? The ease of proving the UNITY

design depends on how well the design is written and the level of detail it contains.

Typically, the UNITY design proof proceeds in the following manner [39]:

1) Define and prove the existence of an Invariant (something that is always true
about the design throughout its execution).

2) Define and prove the existence of a Fix Point. The Fix Point is the stopping

3) Define a progress property and show the progress property holds until the fix
point is reached.

Table 38: Steps to a UNITY Proof

C.4.3 Mapping of the Initial Design

The UNITY approach provides for a means of transforming a high-level

specifications into an intermediate forms using correctness-preserving mappings [39].

The intermediate form provides a structure for developing an implementations on a

144

specific parallel architectures, whether it is sequential, asynchronous shared-memory, or

distributed, while maintaining the programs correctness. Source code for the

executable program can be written based loosely on the intermediate form [39]. The

description of the mappings describes "how" the UNITY program is executed on the

target machine. Mappings for particular classes of architectures exhibit common

characteristics [14].

Chandy and Misra provide the following mapping strategies for asynchronous

shared-memory architectures (Table 39), distributed architectures (Table 40), and

synchronous architectures (Table 41) [40]:

The mapping strategy of a UNITY design to asynchronous shared-memory
architectures is as follows:

1) Allocates each statement in the program to a processor,

2) Allocates each variable to a memory location, and

3) Specifies the control flow for each processor.

And this mapping must satisfy the following constraints:

■ All variables on the left side of each statement allocated to a processor are in
memory that can be written to by the processor, and all variables on the right
side are in memories that can be read by the processor.

• The control flow for each processor is such that every statement allocated to
the processor is executed infinitely often.

Table 39: Mapping to Asynchronous Shared-Memory Architectures

145

The mapping strategy of a UNITY design to distributed architectures is the
same as for asynchronous shared-memory architectures except:

1) Each variable is allocated either to the local memory of a processor or to a

The mapping must satisfy the following constraints in addition to the constraints
of the shared-memory case:

• At most one variable is allocated to each channel, and this variable is of type

• A variable allocated to a channel is named in statements of exactly two
processors, and these statements are of the following form: The statements
in one of the processors modify the variable by appending an item of data
(the message) to the rear of the sequence, if the size of the sequence does
not exceed the buffer size; statements in the other processor modify the
variable by deleting the items at the head of the sequence, if the sequence is
not null. The variable is not accessed in any other way.

Table 40: Mapping to Distributed Systems

In general, mapping a UNITY design to synchronous architectures is complex.
Therefore, I will restrict this discussion to what the mapping should consist of:

• A description of how the operations in each statement are to be executed by
the processors,

• An allocation of each variable to the memory, and
• A specification of a single flow of control, common to all processors.

And this mapping must satisfy the following constraints:

• The manner in which processors execute a statement is consistent with the
allocation of the variables to memories.

• The flow of control must be such that each statement is executed infinitely

Table 41: Mapping to Synchronous Architectures

146

Appendix D: Decomposition of the PSP Problems

D.1 Decomposition of PSP Problem

Many different genetic algorithms have been used to manipulate the search

space in AFIT's continual efforts to find the global optimum conformational energy for

general proteins. We have added to these approaches by incorporating the problem

domain into the Linkage Learning GA (LLGA) developed by Harik [7] and incorporating

the CHARMm energy model [41, 42] as their primary fitness functions. The LLGA's

pseudo-algorithm is in CHAPTER 3. LLGA's processes are broken into the tasks

identified in Table 42.

Task Average
Number Description Execution Time Workload
1 Initialization - creation of initial population 4 4
2 Fitness Evaluation - CHARMm 5 5
3 Tournament Selection 2 2
4 ' Exchange Operation 3 3
5 Stopping Condition - determines if objective

is reached and records final most fit individual
1 1

Table 42: LLGA Task Decomposition

We have ranled the task with respect to average execution time and workload (1 being

the lowest value and 5 is the highest).

Since, we are primarily comparing the LLGA to the fast messy GA (fmGA) in

CHAPTER 5 and CHAPTER 6, we have presented the corresponding task

decomposition in Table 43. The pseudo-algorithm is in CHAPTER 3.

147

Task Average
Number Description Execution Time Workload
1 PEI - creation of initial population 7 8
2 Fitness Evaluation - CHARMM 8 8
3 Tournament Selection 4 5
4 Reduce Population Size 5 4
5 Primordial Phase Stopping Condition -

record population
3 3

6 Cut-And-Splice 6 7
7»«74 Juxtapositional Stopping Condition -

determines if objective is reached and
records Klh-order Template

2 2

8 Stopping Condition - determines if
objective is reached and records final most
fit individual

1 1

Table 43: mGA Task Decomposition

Both of these decompositions (Table 42 and Table 43) lead to data decomposed

solutions. An alternative method towards decomposing this problem leads to

parallelization of the CHARMm energy model (i.e., a task decomposition model). The

decomposition of the CHARMm energy model as implemented at AFIT follows (see

SECTION):

Task Number Description Average Execution Time Workload
1 Bond Energy 6.00e-6 sec 2
2 Angle Energy 5,O0e-6 sec 3
3 Torsion Potential 1.04e-3 5
4 Improper Torsion too small to measure 4
5 Lennard-Jones Equation 2,33e-2 sec G
6 Energy Constant too small to measure 1

Table 44: CHARMM Decomposition

In order to implement the decomposition presented in Table 44, it would require

passing a message containing the complete molecule layout to each subtask in order for

them to compute the total energy. The size of this message is approximately 240 bits

(representing the protein [Met]-Enkephalin) plus 4,700 bits (molecule layout represented

in a PDB file). Therefore, this model of parallelization was not implemented nor will it be

discussed further.

741 have combined the stopping condition check with saving the kl -order template.
148

D.2 Scheduling and Load Balancing of the GAs

Just looking at the benefits of the LLGA and fmGA decomposition schemes

presented in Figure 60 and Figure 61, we can tell that little parallelization is possible

since each processor must communicate its results to the next processors.

Loop

Simple LLGA Decomposition

Figure 60: Direct LLGA Task Decomposition Schedule

Climbing Deception Latter Loop

Primordial Phase Loop Juxtapositional Phase Loop

(T1 VW T2 j-V T3 \-*(T4 j—►/ T5 j-*/ T6 Y-U T2' Y-U T3' Y-U T7 Y-U T8 J

Simple mGA Decomposition

Figure 61: Direct fmGA Task Decomposition Schedule

The best possible scheme may come from combining tasks onto single processor,

which would cut the communication overhead considerably and more evenly distribute

the workload. This sort of scheduling follows from Zhu's workload scheduling [43]. In

Zhu's algorithm, the scheduling is accomplished by computing the workload associated

with each level of a directed acyclic graph (DAG) starting with the source node. Neither

of the above graph is a DAG. We have chosen to ignore this constraint for the time

being because we could unfolded the cycles in each of the above graphs by simply

duplicating the looped tasks an "appropriate" number of times (i.e., analagosly to

compiler "loop-unrolling"). The next step involves determining whether a task should be

aggregated with its predecessor or whether it should be parallelized (see Figure 62 and

Figure 63 for result of aggregation). Once we have developed this new set of DAGs,

we can compute the workload for each processor, and once we have aggregated these

workload values up the DAG, we can determine the final schedule for completing the

149

task. The DAGs indicate a compression of communication and computation and a

possible final task scheduling scheme for these GAs.

When developing the new DAG for the fmGA (Figure 63) and LLGA (Figure 62),

we considered the expected execution time and workload aggregated as a single

component. In order to represent this, we assumed that each ordinal unit represents a

single time unit. For example, if we looked at task 1 defined in Table 42, we see task 1

defined as having 2 for expected execution time and 2 for workload. Therefore, the task

would have a computation value of 4. The communication times for each task are

based on the amount of data each task receives from the preceding processor and

sends to the next processor. The sizes of the messages are based on the size of the

population. Therefore, in the DAGs, we have indicated the portion of the population

needing to be passed to the next processor. If the whole population needs passing, I

have indicated this with a "p."

Loop

/separate'-message for
population

&
*\ 10/p J

Loop

Figure 62: Zhu's Scheduling for LLGA

150

Climbing Deception Latter Loop

Primordial Phase Loop Juxtapositional Phase Loop

Climbing Deception Latter Loop

Figure 63: Zhu's Scheduling for fmGA

An alternative method for parallelizing the GA thatwe felt it was important to

investigate is Kruatrachue-Lewis' Duplicate scheduling [43]. The basic idea is to

duplicate task to reduce communication delays, at the cost of increasing the space

complexity and total computation of the program. This paradigm is similar to the

"Farming Model" or "Island Model" presented by Gates [15] and Kaiser [37]. This sort of

scheduling strategy leads to the following DAGs (see Figure 65 and Figure 64). We've

based the task duplication on the same computation and communications estimates

developed for Zhu's algorithm.

151

Loop

separate message for
population

separate message for
population

Figure 64: Kruatrachue-Lewis' Duplicate Scheduling for LLGA

Climbing Deception Latte r Loop

f T
\ 13

1 _ -ki T2 i_
■*l 16/p)

Primordial Phase Loop Juxtapositional Phase Loop

_J T8 \

\2/p J
J T3]—J T4 \-J T5 _k/ iTv ^\ 9/p n«/p-.in 6/p y^ p+1 r\ 16(W a hK V p+1 / \ / >

T7 _
4/p y

(T1 \-
\ 13/p A

_J T2 _
"H. <i6/p-y

Primordial Phase Loop Juxtapositional Phase Loop

_J T8 \

v2/p J
W T3 1 J T4 1 J T5 1 fcf Jo/ TL 9/p n»p-.sn 6/p r~*\ ^

\ hf T2' A J T3' A ^Z
A~*l<16/1 J \ 9/p y ^

T7 _
4/9 J

i i \

\ Y T2 y I
\ A <16/p- J /

Y T2 Y
\ <16/p- /

\ Y T2' y /
\A <16/1 J /

Y T2' Y
\<16/1 /

Climbing Deception Latter Loop

Figure 65: Kruatrachue-Lewis' Duplicate Scheduling for mGA

152

D.3 Scheduling and Load Balancing of CHARMm

Turning our attention to the decomposition of CHARMm, we again see little gains

by blindly parallelizing the equation across several processors, but after applying the two

aforementioned scheduling schemes we can see appreciable performance

improvements. Even though the calculated gain is not significant for the small molecule

trial figures, we argue that by parallelizing the CHARMm model, we will see huge

dividends when we attempt to "CHARMM-menize" a much larger protein.

[Distribut \
I or)

& e
Figure A

e •© (T1) (T2) (T3) (T4)

Gather

Figure B

(T5) (T6)

Figure 66: Two Simple Parallelizations of CHARMM

First let us look at Figure 66. This figure presents two distinct ways to graph

CHARMm as a DAG. In both figures, we have scheduled each task on separate

processors, but Figure B affords us a greater possibility for parallelization. Figure A is

a linear pipeline model in which the intent is to pass a single chromosome through at a

time in the hopes of achieving some speed-up. This model may achieve some speed-

up over "normal, non-decomposed" CHARMm, but it has a serious bottleneck at Task 5

(T5) that severely hampers the potential gain. The bottleneck is similar to float-point

division bottleneck found in CPU design (i.e., the fastest the Figure A CHARMm

pipeline can go is determined by the Lennard-Jones Equation). On the other hand,

Figure B circumvents this problem by allowing out-of-order completion of each

chromosome's fitness evaluation even though we have the added overhead of

distribution and gather of the final answer. Out-of-order completion could be

implemented by allowing the "gather process" to know a priori the population size and

implementing an in order traversal for distributing the population. This way the gather

progress would understand that the first message received by any particular task would

153

belong to the first member of the population and so on and so forth (i.e., the second

message from the same task would go to the second member of the population).

At this time, we should emphasize the serious shortcoming to any decomposition

of CHARMm: the required message size. The message size is a limiting factor because

for a relative small protein model (for instance [Met]-Enkephalin) the file size is

approximately 4,700 bits which would need to accompany each chromosome through

the CHARMm calculation process. We propose a simple yet elegant method to get

around this bottleneck. The file is static; it never changes. Therefore, we could have

each processor load the file as part of its initialization while the other tasks of the GA are

accomplishing their work. Therefore, the message size would be reduced to the length

of the chromosome plus the length of the energy result.

Zhu's scheduling for CHARMm is in Figure 67.

Distributor

/ Bond, \
/ Angle, & \
\ Torision j
V Energy /

/ Improper \
. / Torison & \ ^
"^ Energy J

\ Constant /

Figure A

& •0
/ Bond, ^
/ Angle, &
1 Torision
\ Energy .

] (T4]

/ Gather» \
Energy

\ Constant /

Figure B

(T5)

Figure 67; Zhu's CHARMM Schedule

Figure A provides the overall greatest return because it is not hampered by have

the Distributor or Gather processes of Figure B which are overhead.

Kruatrachue-Lewis' Duplicate scheduling scheme produces the DAGs found in

Figure 68 which show that again the linear pipeline looks as if it will provide the greatest

improvement because it does not have the additional overhead.

154

Figure A Figure B

Figure 68: Krutrachue-Lewis' CHARMM Schedule

D.4 Summary

In this appendix, we have investigated several different possiblities for

parallelizing the LLGA and the CHARMm energy model in order to determine which

methodology produces the greatest speed-up. CHARMm requires an average 1.09

seconds to evaluate each chromosome. Thus, a 50 chromosome population, the worst

case execution time for CHARMm is 54.50 seconds per generation. On the other hand,

the LLGA requires approximately 4.5 seconds of processing per generation. Therefore,

we follow Kruatrachue-Lewis' Duplicate scheduling scheme for our parallelization

methodology where we will be parallelizing the fitness evaluations.

155

Appendix E: Additional LIGA Structure

E.1 Messy Genetic Algorithm (mGA)

The mGA proposed by Goldberg era/., in 1989, was a major paradigm shift for

its time. The mGA was the first to suggest moving from "neat coding and operators" to

allowing variable-length strings that may be under- or over-specified with respects to the

problem being solved [1]. The original mGA was designed to handle the "deception

problem." Goldberg's originally proposed mGA was fashioned from his view that

nature's climb out of the primordium occurred with genotypes that exhibit redundancy,

over-specification, under-specification, changing length, and changing structure [1].

E.1 a mGA Chromosome Representation: Positional Precedence

Positional precedence may also permit the formation of a kind of intra-

chromosomal dominance operator [1]. This intra-chromosomal dominance operator was

not used in the original mGA, but the concept is useful in large allelic alphabets. It

allows the mGA user to pre-specify some precedence relationship amongst the allele

values. Then, as the mGA handled over-specification, it takes into account these

precedences [1]. Figure 69 illustrates how the intra-chromosomal dominance operator

works.

Inter-Chromosomal
Dominance Operator^

I (M) | (2,2) | (1,1) | (0,3) | (0,1) | K | (2,2) | (0,3) | (0,1) |

Chromosome Used in Fitness
Evaluation Original Chromosome

' V

Figure 69: mGA's Inter-Chromosomal Dominance Operator

If the allelic alphabet is [0, 1, *] with the inter-chromosomal precedence [1st, 2nd, 3rd]

respectively, then the inter-chromosomal dominance operator would skip the (*, 1) and

(1,1) alleles and use the (0,1) allele value in the final chromosome representation sent

to the fitness function.

E.1b mGA Chromosome Representation: the Competitive Template

The key to this notion of using locally optimal template is salient building blocks.

If the relative rankings of the best building block and the other building blocks are

156

preserved using a template, and as long as the other building blocks have a template

fitness that is less than or equal to that of the lowest locally optimal point, then selection

is expected to yield building blocks that are at least as good as the lowest locally optimal

point [1]. Therefore, only salient building blocks obtain fitness values better than the

template value [2], and according to the Schema Theorem, their representation should

increase within the population. The "trick" to using a competitive template is its

generation, (i.e., how can a locally optimal template be generated without the prior

knowledge of the fitness landscape?) In his original discussion, Goldberg made a

couple of suggestions using mathematical criteria such as linear local optimization

techniques, as well as preprocessing the problem domain in SGA and using the

returned "best" chromosome as a basis for the template [1].

In later papers covering the mGA, Goldberg suggests the template generation

method most commonly used today - climbing the-ladder-of-deception [2]. This concept

can be best explained as solving an order-k deceptive problem by first solving it to

order-(k-l) optimality and then finding the necessary order-k improvements to that

solution [3]. Therefore, most mGA implementations have what is called an "outer-loop"

that increments the order of the deception the mGA is trying to combat (see Algorithm

1). For example, by starting at the k = 1 level, a 1st-order optimal template can be

found, which in turn can be used in solving for the k = 2 template, and so on until the kth-

order of deception that characterizes the problem domain in question is accomplished

[2].

E.1c mGA Algorithmic Phases: partially enumerative initialization (PEI)

The building blocks created for in PEI are an exhaustive list of allele

combinations of length equal to the estimated build block size or nonlinearity of the

problem domain [14]. If the building block size is greater than or equal to the level of

deception present in the problem, the PEI phase guarantees that all building blocks

necessary to form the globally optimal solution are represented in the initial population

[14]. This results in the mGA's PEI population size being governed by Equation 41 [1].

157

./! \l\

iv/iere, k is the order of the building block,
C is the cardinality of the alphabet,

/"/'s the string length, and
{ n

■■1|
genes.

is the number of combinations of k

Equation 41 : PEI Population Equation

This leads to rather large populations quickly. Figure 70 indicates the rapid

population growth rate required in PEI for a chromosome length of 240 binary alleles.

Specifically, the number of building blocks required in the PEI phase for this

chromosome assuming a 3rd-order deception problem is:

Using Equation 41: n = Ck ^

V)
1 = 240
k = 3
C = 2

Therefore,

(chromosome length)
(3rd-order deception problem)
(binary allelic alphabet)

n = T
240

n = 8(2275280)
n = 18,202,240 initial building blocks (indicated on Figure 70)

158

1E+78-

1E+75-

1E+72-

1E+69-

1E+66-

1E+63-

a 1E+60

§. 1E+57

rö 1E+54-

c 1E+51

.£ 1E+48

O 1E+45

O 1E+42-
in
O 1E+39-

O 1E+36-
k.

■g 1E+33-

"g 1E+30-

3 1E+27-

g) 1E+24-

O 1E+21 ■

* 1E+18-

1E+15-

1E+12-

1E+09-

IE4O6-

1000-

1 ■

(

Necessary Population Size

+
^^^Ül^^^^^i^^^^^^B^^^^^^^Ä^^^^^^^^^^^^WI^^^^^H
IMII^fcl^Mii^^^^^^BI^^^^^^^^^^^^B^^^^^^^^^^^^^^^^^I
i^l^^Vli^^^rt^^^^^^^^Hi^^^^^^^^^MI^Hi^Ml^^^^^^H^K
^^^^^^^■^^^^^^^^^■IIHI^^^tf^^^MI^Hil^Bii^H^^ll^^^^^H
■^^^^■^^■^■^^^^^^■^^■■^^^^^■I^B^^^^^^^^^^^^^M
B^BÜ^^Ä^^^^BII^^^M^^^R^BiB^ÄB^^M^^^^^^B^^^^^^^
^^^^^^H^HI^^^^BIS^H^K^^^^HI^^^H^^^^A^^^^^^^^^^K
^^^M
^^■il^^^^fll^Mi^^^^^^^Hi^^^^^^VV^^^^^^^^^^^^^^^^B
■I^^^^^BI^Ä^^^^^^^^^I^^^H^^^^^B^^^^^^^B^^^^^H^Ä
I^R^^B^Ä^^^^M^^^BI^^^^^^^MiM^^^^B^^^^Hi^^^^^BI^B
^^^^^^^^^HI^^^H|l^^^^^^^BI^HI^^^ff^^^^flS9I^^^^M^^^^V
^^H^^^^pi^^^^Bl^^^^^^^hVl^^m^^^^l^Hi^^^^^^^l^H
^HI^^I^^^^rti^^^fcl^^^^tai^^^BB^^B^^M^PII^^^ÄI^^^^K

j^*1

I^^^BI^^^^^^^^^^MIi^^^^^^BI^Mtfl^^^^^B^Hi^^^^^flBB
^^■^H^^tt^fii^Bli^^^^^H^^^^^^^^^Hi^Hl^^^^Hi^^Hi^H^H
^^■Ü^B^^^^B^^^^^^MliÄ^H^BiMiÄi^^^^B^^^^PilBM^^^^
I^H^H^^h^MI^^^^B^^^Aii^^^^HHI^^^rt^^B^^^^HI^BB

-♦-Length = 240

JM 8202240

) 5 10 15 20 25 30 35 40 45 50 55 60

Building Block Size

65

Figure 70: Population Growth Rate for the mGA

E.1d mGA Algorithmic Phases: Cut-and-Splice

Cut-and-splice can be thought of a simple one-point crossover operating on

variable length strings. But, this operator was specifically designed to handle variable-

length as well as over-specified and under-specified chromosomes [1]. A "cut" is

performed first on each of two individual chromosomes, randomly chosen from the

population, using a specified bitwise cut probability (pk) [1,16]. The overall cut

probability for each individual is governed by Equation 42 where X, is the current length

of the string and pc is subject to the limit pc < 1.

159

l\ =pt(A-1i

Equation 42: Cut Probability

Thereafter, the cut operator cuts an individual at a position chosen uniformly at random

along its length [1] if a "cut" is dictated.

The "slice" operator concatenates the cut portions of the mating individuals in

order to produce new population members. The cut chromosomes are recombined with

a specified slice probability (ps). Dymek [48] observed that there are four possible

outcomes from the cut operator: 1) neither chromosome is cut, 2) only the first

chromosome is cut, 3) only the second chromosome is cut, or 4) both chromosomes are

cut. From these "cut cases," Goldberg's splice operator systematically checks the

possibility of splicing only successive pairs [1], while Dymek points out that more

complex manipulations of the cut chromosomes are possible if we don't limit the splice

operator to just successive pairs [16]. Figure 71 illustrates Goldberg's view of the cut-

and-splice.

Dymek's view, although feasible, has not been implemented. His view of the cut-

and-splice operator would add more splice possibilities to each case. (See Table 45)

CASE Goldberg Dymerk
1 2 3
2 3 7
3 3 7
4 5 13

Total Possibilities 13 31

Table 45 : Cut-and-Splice Combination Possibilities

160

I « i

■ Cut Locations

Two individuals are first choosen randomly from the population

Case 1: No Cuts Case 2: Only the first is cut Case 3: Only the second is cut Case 4: Both cut

I ' I

Next, the cut operator is called for each individual, the possible substrings could be.

Case 1: No Cuts
(2 Possible Outcomes)

1) No Splice

Case 2: Only the first is cut
(3 Possible Outcomes)

1) No Splice

2) Splice Occurs
I r

3) 2 & (3,4) are spliced

I 1 I

Case 3: Only the second is cut
(3 Possible Outcomes)

1) No Splice 1) No Splice

I ' I

Case 4: Both cut
(5 Possible outcomes)

3) 2 & 3 are spliced

[ZTT I

2) (1,2) &3 are spliced
I i ~W^M

2) 1 & 2 are spliced
I r

3) 3 & 4 are spliced

4) 3 & 4 are spliced

I r

5) 1&2 and 3 &4 are spliced

Finally, the possibility of splicing is checked on successive pairs

Figure 71: Cut-and-Splice in a Nutshell

E.2 Selfish Gene Genetic Algorithm (SG GA)

The SG GA proposed by Corno, Reorda and Squillero (1998) follows a

somewhat nontraditional view of evolution. The SG GA follows a recently proposed view

of evolution where the fundamental unit of natural selection is the gene rather than the

individual. The selfish gene theory of evolution, proposed by Richard Dawkins in 1976,

claims that the individual does not survive, but the genome of the individual is able to

161

replicate itself into subsequent generations [4]. In the selfish gene concept of evolution,

individual genes strive for appearance in the genotype of the individuals, whereas the

individual is nothing more than a vehicle allowing the genes to reproduce. Due to the

shuffling of genes that takes place during sexual reproduction, "good" genes (i.e., good

building blocks) are viewed as those genes that, when combined with other genes, give

higher reproduction probabilities to the offspring [4]. Thus, such genes have a higher

probability to spread in the gene pool and therefore receive greater representation in

future generations.

E.2a SG GA Chromosome Representation: Virtual Gene Pool Growth Rate

The rate at which the size of the virtual gene pool increases is much less than

the growth rate found in the mGA (see Figure 72). The growth rate of the SG GA is

based on the length of the chromosome (i.e. the number of loci) and the allelic alphabet

(i.e. the alphabet of values any loci can assume) for each locus. While the allelic

alphabet need not be the same for each locus, the graph assumes a binary allelic

alphabet for each locus.

162

SG Gene Pool Size

2750

2500

2250

2000

1750

121500 o o a
I 1250
a> a

1000

750

500

250

0

' Increase Gene Length

100 200 300 400 500 600 700 800

Length of Chromosome

900 1000 1100 1200 1300

Figure 72: Population Growth Rate for the SG GA

E.2b SG GA Algorithmic Phases: Mutation

The probability of a mutation (Pm) partially controls the rate of convergence of

the SG GA. If Pm is set too high, mutants can invade the population and either cause a

convergence to a suboptimal point in the landscape or cause enough variation within the

allele marginal probability vector to hinder convergence. On the other hand, if Pm is set

too low, the alleles converge rapidly to the first optimal solution found by the SG GA.

For example, if we view the search space in only two-dimensional space, the SG

GA is traversing a mountain range represented as a line graph. The suboptimal

solutions are any locally maximal points that are not the maximum. (See Figure 73.)

(Reverse this analogy for a minimization problem.)

163

CO

'x
<

1

>-
maximal

maximal

MAXIMUM

maximal maximal

X-Axis
f

Figure 73: 2D Fitness Landscape

E.2c SG GA Algorithmic Phases: Allele Frequencies and Epsilon (e)

The value of e determines the extent of the positive/negative feedback in the

system, and therefore, the balance between a fast convergence towards a local

optimum and a broader exploration of the search space [4]. To understand how this

feedback is triggered, consider an allele ai2
75that produces a better fitness for the

individual when allele a23 is also expressed. If allele a23 increases its frequency, then

the individuals with allele a12 becomes more likely to win tournaments. This causes

allele ai2 to also increase its frequency. This feedback mechanism quickly drives the

virtual population towards a locally optimal solution that includes both allele ai2 and a23.

The convergence speed of the SG can be tuned using this concept [4]. A large e drives

the virtual population towards the first local optimal it finds, while a very small value for s

makes the VP float for a longer time before converging to on a particular local optimum.

E.3 Gene Expression Messy Genetic Algorithm (GEMGA)

The gene expression messy genetic algorithm (GEMGA) is another compelling

investigation into the linkages between genes as proposed by Kargupta in 1996.

GEMGA's foundation is rooted in an alternate perspective of blackbox optimization

75 Allele representation: aiv => a = allele, I = locus, v = value
164

(BBO) in terms of relations, classes, and partial ordering which Kargupta coins as

SEARCH (Search Envisioned As Relation and Class Hierarchizing) [9, 10,11, 45].

E.3a Chromosome Representation: Gene Representation

Each gene representation in GEMGA contains three values: the locus, allele,

and weight [9]. The locus and allele follow the traditional definitions and are used to

guarantee positional independence of the gene within the chromosome. The weight, as

it corresponds to a gene characteristic, was initially used to explicitly evaluate the

relation space [9], but this gene characteristic has evolved. In 1997, Kargupta changed

the weight's role to that of modeling the class space [45]. Then, in the most current

version of GEMGA (1998), the weight characteristic of a gene has changed names and

roles [10]. It is now called a capacity, and it represents the possibility of change for that

particular gene. Therefore, it no longer models the class space. This gene

characteristic still requires a positive real value lower bounded by zero [9, 11, and 45].

The capacity of a gene is determined by the transcription operator, and will be further

explained in Section 3.4.2.

E.3b Algorithmic Phases: Initialization

We can estimate the size of the population required to investigate order-k

relationships between genes by varying c in order to model different fitness variances

among the initial population. Based upon Equation 18, Figure 74 estimates the size of

the initial population required if we are looking for 3rd-order linkages with varying c-value

and increasing n until the 3rd-order problem is solvable. The increasing c-value indicates

more fitness variance in the initial population. As with previous graphs, Figure 74

assumes a binary allelic alphabet. Figure 74 indicates that as the c-value increases the

size of the population must increase by a factor of eight, but since the c-value

represents the fitness variation amongst the population members there is no a priori

method of determining the initial population size. Therefore, if our search landscape

contains extremely high fitness values (1x10100) and extremely low fitness values (-

1x10100), GEMGA may be unable to find the optimum without enumerating most of the

landscape in the initial population.

165

Initial Population Size Required

3.5

31

2.5

in 2 a a n

1.5-

0.5

C=10

c=20

c=30

C=40

c=50

c=60

100 200 300

Population Size

400 500 600

Figure 74: GEMGA Population Growth vs. Increasing Initial Variance

E.3c Algorithmic Phases: RecombinationExpression

The RecombinationExpression phase of GEMGA begins with the "modified"

population. The RecombinationExpression stage is actually two separate subphases:

PreRecombinationExpression and RecombinationExpression. The

RecombinationExpression phase repeatedly applies these two subphase until some

predefined stopping condition is met.

The first subphase is the application of the PreRecombinationExpression

operator. During this subphase, the PreRecombinationExpression operator is applied to

the population to determine the clusters of genes precisely defining the relations among

166

those instances of genes considered [10]. For example, two chromosomes are

randomly selected from the population. One is arbitrarily designated as dominant76.

The linkage set of the dominant individual is compared to the genes from the other

chromosome. If the dominant chromosome linkage set members are contained within

the other chromosome and they have the same value and capacity, then they are

grouped and extracted as a set. In the linkage set of the dominant chromosome, each

gene has its weight incremented by a predefined amount (i.e. an algorithm parameter)

[10]. If this new linkage set is not already included as a linkage set of the recessive

chromosome, it is included as a new linkage set and the different factors are initialized

as discussed in the transcription operator.

After a prespecified number of trials (i.e. another algorithm parameter), a Ixl

conditional probability matrix is formed. The matrix entries indicate the probability of

linkage between two genes [10]. Finally, the maximum value for each row of the matrix

is computed. The genes within some predetermined e of the maximum are retained as

the linkage set for each gene row, and the weight is set to the average value of the

entire matrix. This operator is only applied in the first generation and the linkages are

never recalculated [10].

In the second phase of the RecombinationExpression stage, the GEMGA

Recombination operator is applied. This operator implements crossover and

reproduction/selection in GEMGA. First two random chromosomes are selected from

the population, and each is copied (i.e. A to A', B to B'). One of the selected

chromosomes is chosen as the donor of genetic material (A'). An element of the A'

linkage set is transferred to B' based on a linearly combined factor of its weight and

goodness. The transfer of corresponding genes between the two chromosomes (A' and

B') is based on whether or not the goodness values of the disrupted linkage set for B'

are less than that for A'.

Once the linkage sets of the two offspring are adjusted, they undergo a fitness

evaluation. Furthermore, depending on whether the fitness of B' is decreased or not,

the goodness of the selected linkage set from A' is either increased or decreased [10].

The product of this operator is four unique chromosomes (e.g., 2 parents and 2

76 The dominant chromosome is arbitrarily chosen from the two chromosomes.
167

children). Based on the fitness of the four individuals, two chromosomes with the best

fitnesses are returned to the population.

E.4 Linkage Learning Genetic Algorithm (LLGA)

The LLGA was first proposed as a new linkage investigating algorithm by Harik

in 1996. Harik argues that other implementations of genetic algorithms do not take

explicit advantage of "tight linkages" early enough in their algorithmic processing. If they

did (as does the LLGA), then they would be able to solve "difficult problems [7]." The

LLGA takes advantage of tight linkages between genes by using a new two-point

crossover operator and a different chromosome representation.

E.4a LLGA Algorithmic Phases: Exchange Operator

The follow figure illustrates the LLGA's exchange operator.

168

Donor
Interpretation
, Point

I 13.11 -^—^

Recipient
Interpretation

Point

(2 01 V---"! ..4.0))
y V.

'1,0)1 f(3,0))

5.0) N--'
(2,1) y—vi v-u

(5,0) >

Donor
Interpretation

Point

Recipient
Interpretation

Point

Grafting Point

Recipient
Interpretation

Point New
Chromosome

Step 4

v„w /

Overfull Chromosome

New
Interpretation

Point

Chromosome after
Duplication Deletion

Figure 75: An Overview of the Exchange Operator

169

E.4b LLGA Algorithmic Phases: Preconvergence Avoidance and Introns

In order to avoid preconvergence, the LLGA requires an "exponentially larger

number of introns encoded" into the chromosome to facilitate the Schema Theorem [7,

17]. Basically, the LLGA is trying to force linkages within building blocks to become

shorter in the classical sense while counter-acting the disruptive affects of crossover.

Historically, a mutation operator battles the GA's tendency to preconverge by

"reseeding" the population by mutating genes within some number of chromosomes. It

is implicitly assumed that the mutated chromosomes represent previously unseen terrain

of the search space. This enables the GA to escape local minima. Since a single

chromosome in the LLGA population represents the complete search space, mutation,

in the classical sense, would not make sense77. Therefore, the number of introns coded

into the chromosome a priori plays a major role in assuring that the LLGA adequately

searches the landscape before converging to a particular minima. The number of

introns required in the chromosome is a function of how disruptive the crossover

operator is encouraged to be, as well as the number of exons. Equation 43

mathematically represent this notation expressed as a probability (P) that crossover is

disruptive.

number of exons
/> = I

(number of exonsj + (number of introns)

Equation 43: Introns Required per X Exons

Typically, the smaller the value of P the more likely it is that building blocks are

preserved. Crossover always is disruptive when P = 1.

This occurs when there are no introns. If we relate Equation 43 to a

chromosome which has 240 exons, and we desire crossover to be disruptive only 0.01 %

of the time, then,

77 The classical mutation operator would actually remove alleles from the population instead of
reintroducing them. On the other hand, a LLGA mutation operator could be constructed, but
instead of mutating allelic values, it should mutate the interpretation point. This would allow
previously unexpressed genes to surface.

170

0.01
240

240+ (number of introns)

0.01(240+ (number of introns)) =240

2.4 + 0.01(number of introns) =240

number of introns = 23,760

Figure 76 indicates how quickly the number of introns must grow in order to

counteract the effects of disruption.

30000

25000

20000

o 15000 J
0)

£
3 z

10000 -

5000

Introns Requirement For 240 Exons

0.05

»136Q . I« 000 ;

0.1 0.15 0.2

Disruptive Capabilities of Crossover

-^»720

0.25 0.3

Figure 76: Intron Requirement Trend

171

Appendix F: Software Locations

F.1 Source Code

The source code corresponding to these implementations is found on the AFIT

Parallel and Distributed Lab Network-of-Workstations (NOW) room 243 building 640

under the following directory:

-genetic/Software/

This directory is composed of the following subdirectories and a short description of their

contents is provided:

♦ Linkage_Learning

♦ /original: contains the original untampered Linkage Learning genetic algorithm
(LLGA) source code.

♦ /sllga: contains the modified LLGA-Protein Structure Prediction (PSP) source
code.

♦ /pllga: contains the modified parallel LLGA- PSP source code.
♦ /constrained_charmm: contains the modified CHARMm source code.

F.2 Input and Output Files

Gualke developed a good description of the required input files for the PSP

calculations and the basic set of output files AFIT GAs produce [73]. The reader is

referred to his thesis for their coverage. NOTE: THE RTF (MOLECULE TOPOLOGY

FILE) FILE AND THE PARM.PRM (PARAMETER FILE) NEED TO COME FORM THE

SAME QUANTA VERSION. IF THE DON'T, THE AFIT TOOLBOX IMPLEMENTATION

WILL EITHER HANG OR RETURN ERRONEOUS RESULTS. The LLGA requires a

single input file in the following form:

172

<•' iiipMlfitel' ci sample mpul fik: lurthi' LLTiA
Thii ii the 1" i:\ponL'ntially «ruled HH pioblcm that i« ücm.nlicit
it in Gooiyi:« Hank'« the«.!« (pp Hl> 9u).
H Kadi HU K a 4-bit Irap tundi.in
Thii «igiul K 0.4 (global is I. «k-icpuve i* 0 ö).
7lie BHs nie scaled b> si f.«.Ii« of ?

^building hlncks
I -1<J: lew Jt high Uli - moan« :til BB will IM tt-«icJ Using "n.ip'
» ir.ip . oh|CLlive luncnon

0.4 : signal

'cchiint: gi-iit:«.
«Wh gL'rii.' is made up ol">'r HH<
fnuncnJing fionc;

»selcciiiin.npcriiior
« tournament w ith .replacement clocsn t work
s Iciunianicnt withiMit.it'pkkTiiiL'nl cloesn t work
ff Itiurnamcnl.lHilvtix'n formation«

•■* piuhahiliiv of cro<<<!o\cr
»«liip criteria

raniioni number (jcnciator «ecd
#icpon. population
turned off
#i«sppn bf^l liKfivuliiitl
im no J ofl
JrKIlicmplalu t'iicnamo
it ihi< fik- should contain a Mi mg tioniO tiudinf.'. gcni» tor
.1 BH template.- 11 «houkl be in ihe canonical I'm in
#***^

buildiiij; block«. T.i
1-24 CIIARMM. hVAL 10 il7 0

i-cJinj: gciw«. 240
non<:nding_gene$: 4560

«.dt\"li»ii._npi:rrtIoi tuumiinunl hülwt,on_gt>m,r:iliuib
wlootimi. rate 4

Nlnp.ciiit'iia' sen • 5011*1
seal 0 *72W35
fcpon_pnpulntion off
it:p<«n__be«.i..imii\idu;il' otf
Kliicinplalc_lili:naino. best Ixt

Figure 77: Sample LLGA Input File

The LLGA implementations creates output files: timing.txt, charmm_molecules.txt, and

output.txt. timing.txt contains the timing characteristics for each LLGA execution broken

173

down as the total program execution and the CHARMm energy model execution.

charmm_molecules.txt contains every chromosome sent to the fitness function as well as

the corresponding fitness values. Finally, output.txt contains population parameters for

the complete LLGA execution. Be careful! This file grows rapidly. A typical 5,000

generation run of the LLGA results in 100Mb of information stored in output.txt. In order

to record these files, the charmm define in output.h needs to be specified and the source

code recompiled for charmm_molecules.txt and the output define needs to be specified for

output.h.

174

Appendix G: Flow Diagrams for AFIT's Implementation of the
CHARMm Energy Model

This appendix documents the structural design of the AFIT implemented

CHARMm energy model. First a top-level structure chart is given followed by the top

level CHARMm structure chart (func). Finally, the structure charts for the local

minimization techniques are include.

Text in blue represents global variables and text in red indicates dynamically

passed function calls. These figures must be seen in color.

"ü "°

i im mn

miiis«!

t

t\
charmm_eval

{energy.c)

-Ä ASU

^P *V

>

frpmn
{frprmn.c)

func
{energy.c)

Figure 78: Top Level Structure Chart

175

new_coordinates
{new_coordinates.c|

non_bond_energ^.
fenergy.c]

{energy.c

angle_energy
{energy.c}

Phi
{energy.c}

11» 112*

"J
j!
-J

a
dihedral_energy

{energy.c}

Figure 79: CHARMm Top-level Data and Structure Diagram

176

JZ

c
c
c
> a
£

a
.c

c
X i

ou
p_

Li
st

•<
—

O

o
—
►

do
ub

le

c > V

non _bond_energy
energy.c)

/ \<%Q\
c^ / / \ %*\ *Y/ / \ 4- \ / \ w \

/ 3 \ ~o\ ' (° \ a;H\

1s' /

r4\ V\
V\ 4,h

Y/ ' 3;d \V
f/* /
/ ai /

-o 0/ 3 //

-S? / / ■§

■o r /

\ 2 -<5. A

2 Yt t V\
o o\o C ^>„ \

Rho C \ electrostatic
{energy, c)

CD /

S 9/ {energy.c}

switch func Lennard_Jones
{energy.c] {energy.c)

Figure 80: Non-bonded Energy Module Expansion

177

d
o

u
b

le
 [

4
][
4
]

■4—
O

d

o
u

b
le
 [

4
][
4
]

11 v° cö ▼ O ra

new_coordinates
{new_coordi nates, c}

J _0J Y1 st . 3rd T O

O O
-0 XJ

V

Mat_x_Mat
{new_coordi nates.c}

Figure 81: New Coordinates Module Expansion

178

dvector
{nrutil.c)

■ Jilt

T o T -a

cr

til
T3

11
-0

V

\oV\9

frpmn
{frprmn.c}

4^0^

■ 1.3rd- ./ /

4lh C-

free_dvector
(nrutil.c)

dlinmin
{dlinmin.c) dynamic Procedure!

t (funo - energy.c) ?

(Dynamic Procedure^
Qdfunc • denvate.c^f

Figure 82: Local Minimization Top-Level Data and Structure Diagram

179

CO CO CO o' « ^

CL ST, CL J2 a! ~-

ct
io

n
df

un
c

ct
io

n
df

un
c

o
—
►

ct
io

n
nc
 =

ct
io

n
un
 =
 (

a -> c: ■+-
Z3 ZZ Z3 TZ D "O

U_ U_ IL.CZ Li_ £:

C , , , , *

in
t

■4
—

O

B
oo

le
a

•4
—

O

do
ub

le

■4
—

O

do
ub

le

•4
—

O

do
ub

le

■4
—

O

titlt'
V -o XJ

dlinmin
{dlinmin.c)

\o"9

\ofl9

4-2---
~~~-5th.6th 

int    °r~+-     ^^~~~~~^^ 

dvector 
do free_dvector 

{nrutil.c} *<•                  /            c>. -5          \ 
~S"                    /        -o 3- C      \ 
*    P >?          '             %, Q     p- Q  N 

{nrutil.c} 

3?   P.«?       / 

>> 

mymnbrak dbrent 
{mymnbrak.c) {dbrent.c) 

Figure 83: Module dlinmin Expansion 

E   ? S 
■o > 

CO -a "O 

Jill J!i! I 
IlJftf 

igig is 

mymnbrak 
{mymnbrak.c) 

1st - 4'« 

ill 
ynamic Procedure 

I, f1dim-f1dim.c) ' 
. mjmmm 

(6 

Figure 84: Module mymnbrak Expansion 

180 



.E    O     c   £    0<u     O 

I! II HI V. 

-Dynamic Procedural 
t,(f1dim-f1dim 

dbrent 
{dbrent.c) 

-Dynamic Procedure 
dfldim ■ 
^ 

dfldim.ej?1 

/Dynamic Procedure 
L (fldim - fldim.c)/ 

Figure 85: Module dbrent Expansion 

181 



Appendix H: Object Classes for the Redesigned LLGA 

The overall class decomposition for the redesigned LLGA is in Chapter 4 Figure 

27. This appendix lists the corresponding Rumbaugh diagrams for each object class. 

The text in red indicates parts of Harik's hierarchy that we changed. 

Hga 
{llga.hpp} 

Attribute 
n_BBs: static int; { number of building blocks and subfunctions} 
*subfunc: static Subfunc; {types of subfunction: data type 

defined here} 
*gene_Subfunc: static int; {data stucturethat given a gene finds the 

BB that the gene belongs to.} 
seed: static double; {seed for random number generator} 
coding_genes: static int; {problem length - equivalent to sGA 

chromosome length - exons) 
noncoding_genes: static int; {number of introns} 
total_genes: static int; {intron + exons) 
popsize: static int; {population size) 
pcross: static double; {probability of crossover) 
selection: static PSO; {selection method - data type defined here} 
s: static int; {selection rate - tournament size) 
stop_criteria: static PSC; {stop criteria - data type defined here} 
stop_criteria_arg: static int; {stop criteria argument (ex: maxgen)) 
gen: static int; {generation counter } 
lnitialization...Accornplished: static bool; {flag for charmm initialization ; 
num_.processors: static int; {number of processors used in parallel} 
myid: static int; {my processor identifcation } 
BBtemplate_filename[20]: static char; {filename of BB template file} 

Operation: 
{this is the main loop for the program} 

report 
{llga.hpp} 

Attribute 
population: static bool; {flag - on = report population / off = don't) 
bestjndividual: static bool {flag - on report best individual / off = don't) 

Operation: 
{this class is used as flags to tell what to report) 

timing 
{llga.hpp} 

Attribute 
llga_start_time: static double; {start time for complete run} 
llga„stop_time: static double; {stop time for complete run) 
charmm_start_time: static double; {start time for charmm evai) 
charmm_stop_time: static double; {stop time for charmm eval) 
charmm_ave_time: static double; {average time for charmm evals} 
times_charmm_called: static int; {number of time charmm called) 
timeF: static ofstream; {output filename} 

Operation: 
{this class is used as flags to tell what to report) 

llga_io 
{llgajo.hpp} 

Attribute: 

Operation: 
void read_parameters (ifstream &in ); 
void report (int gen, population *pop, ofstream SreportF, 

ofstream SconvergenceF, ofstream SmaxLinkageF, 
ofstream SavgLinkageF ); 

void print_header ( ofstream &out); 
void helpO; 

int findjestfunc ( char "key ); 
int find_selection_op ( char *key ); 
int find_sc ( char *key ); 

util 
{util.hpp} 

Attribute: 

Operation: 
void makeshuffle {int "shufflearray, int n ); 
void errorcheck ( char *str, bool condition   ); 

bool is_odd {int x ); 
bool is_even (int x ); 
int Min (int a, int b ); 
int Min3( int a, int b, int c ); 
double sqr ( double x ); 

182 



random.h 

Attribute: 

Operation: 
void randomize ( double seed ); 

int flip ( double probability ); 
int rnd (int low, int high ); 
double randomO! (); 

population 
{population.hpp} 

Attribute: 
•Chromosome: chromosome; {array of chromsomes} 
'MatingPool: int {mating pool} 

"BBtemplate: chromosome; {a chromsomes) 
'Worst: chromosome; {the worst chromsomes in the population] 

*BB: int; {number of building blocks across the pop} 
MaxFit: double; {max fitness} 
MinFit: double; {min fitness} 
AvgFit: double; {average fitness} 
MaxBBs: double;  {max # of BBsin a singel individual} 
AvgBBs: double; {avg # of BBs per individual} 
MaxChromLength: int; {max chromsome length} 
MinChromLength: int; {min chromosome length} 
AvgChromLength: double; {avg chromsome length} 
Best: int; {index of best individual} 

•MaxLinkage: double: {max linkage of BBs} 
'AvgLinkage: double: {avg linkage of BBs} 

Operation: 
double compute_maxobj(); 
int count_copies_of_BB(int BB_number); 
void initial_gen_random(); 
int tournament_winner(int "shuffle, int &pick, int s); 

population)); 
population(population &pop); 
-populationf); 

void initial_generation (fstream &bbF); 
population * selectionfiopulafion 'children); 
void recombinationfpopulation 'children); 

void statistics(); 
void save...worst(); 
void evaluate'); 

double maxChromLength(); 
double minChromLength(); 
double avgChromLengthf); 
double maxfitQ; 
double minfitQ; 
double avgfitf); 
double  maxBBsf); 
double avgBBsf); 
int bestf); 

int copies_of_BB(int i); 
chromosome & population[](int index); 
population & operator=(population & pop); 
ostream Soperator 
void printfostream &out); 

void prinLBB(ostream &out); 
void print....worst(ostream &out); 

friend void tselect_without_replacement(population &pop); 
friend void tselect_with_replacement(population &pop); 

friend void tselect_between_generations(population &pop, 
population &children) 

friend int sc_maxgen(const population &pop, int gen); 
friend int sc_all_or_none_BB(const population &pop, int dummy); 

183 



chromosome 
{chromosome.hpp) 

Attribute: 
Genes: geneArray; {array of introns and exons) 
Size: int; {size of chromosome) 
Fitness: double; {fitness value) 
Canonical: geneArray; {array of expressed introns) 

'Linkage: double; {max linkage of BB} 

Operation: 
chromosomeQ; 
chromosome{chromosome&pop); 
~chromosome(); 
chromosome & chromosome::operator = ( chromosome &c ); 

void random (); 
void insert( gene &g ); 
void computeJinkagesQ; 
void display( ostream &out); 
void asGeneArray( geneArray Stemp, int &tempsize ); 
void express(geneArray Stemp, int &tempsize ); 
void express)); 
void evaluate(); 
void inject)); 

void display_BB( ostream &out); 
void lniiialize_BB( ifstream SbbF ); 

bool hasBB(); 
int get_random 
int size(); 
double fitness)); 
int correctBBsQ; 

point(); 

geneArray 
geneArray.hpp 

Attribute: 
Size: int 
*Genes: gene 

Operation: 
geneArray( int size ); 
geneArrayf geneArray &v ] 
-geneArrayf); 
gene & opertor[]( int i); 
ostream Sopertor; 
int size(); 

gene 
{gene.hpp) 

Attribute: 
Locus: int 
Allele: char 

Operation: 
genefint p, char a); 
genefgene &g); 
~gene{); 

void set(int p, char a); 
void set_allele(char a); 
void set_allele(int a); 
void set_locus(int p); 
void randomQ; 
void flip(); 

char allelef); 
int locus(); 
bool is_intron(); 

gene &operator=(gene &g); 
ostream Soperator; 

objfunc 
{objfunc.hpp} 

Attribute: 

Operation: 
double objfunc (geneArray &v) 

double trap (int Ibits, double signal, int "locus, geneArray &x ) 
double tmmp (int Ibits, double signal, int *locus, geneArray &x ) 

double CHARMM_EVAL { int dummy!, double dummy2, int 
*dummy3, geneArray &x ) 

184 



Appendix I: Newman Projection for the Each Dihedral 

Constraint 

This appendix contains Newman Projections to aid the understanding of the 

constraints placed on each dihedral angle. View the center of the circle as the first atom 

in the atom pair. Then, the indicated regions depict the possible location of the 

corresponding next atom. 

Figure 86: Phi Constraints 

Figure 87: Gylcine Phi Constraints 

Figure 89: Omega Constraints 

Figure 90: Chi Constraints 

Figure 88: Psi Constraints 

185 



Appendix J: Statistics Explained 

No experiment is complete without a thorough and complete analysis of the 

collected data. This section covers the types of analysis that could be conducted for 

each set of experiments including analysis of variance and the Kruskal-Wallis H test. 

We shall use ANOVA F-test in conjunction with Kruskal-Wallis H Test to show that valid 

comparisons can be made between separate GA populations. 

J.1 Analysis of Variance Testing (ANOVA) 

"Essentially, this analysis determines whether the discrepancies between the 

treatment averages are greater than could be reasonably be expected from the variation 

that occurs within the treatment classification [76]." Historically, statistical publications 

use the term "treatments" to refer to different populations [74]. ANOVA can be used to 

compare a number of population means simultaneously. Thus, the need to make a 

large number of two-sample tests is avoided [74]. The assumption made about the 

distribution of the data becomes important when we want to use ANOVA to make 

decisions. For instance, when we assume the observations come from a normal 

distribution whose variance does not depend on treatment levels, then the summary 

statistics (MSE, MStreatment, F) have known distributions. It allows us to answer "if there is 

no treatment effect, is it likely we would see an F-statistic this large?" If the answer is 

"the probability is too small (i.e., a small p-value), then we conclude that there is a 

treatment effect." The central limit theorem provides the basis for the explanation of the 

observed fact that many random variables tend to be normally distributed. Referring to 

Table 19, the population for each experiment is only 50 members out of a search space 

of 2240 possibilities. Therefore, we cannot implicitly assume that our population is 

normally distributed and compare two individuals from separate population (i.e. 

comparison of two unique optimal solutions). Hence, the supporting Kruskal-Wallis H 

Test in these case. If both tests agree that the individuals can be compared, then valid 

conclusions can be made between separate test. 

On the other hand, we can use the F-test when we are comparing the average 

energy obtained by two unique algorithm executions because we are taking the average 

over the entire population (fifty members). The Central Limit Theorem indicates that if 

we take a large number of observations independently from the treatment groups and 

take twice their average, the average will behave as if it came from a normal distribution. 

186 



The upshort of this is that if you construct a ANOVA table and calculate the F-test, this 

will then have an approxiamte F distribution.. Furthermore, the population size inside 

the GA has little to do with the distribution of the output (i.e., the average energy). 

Table 46 is an example of a two-way ANOVA table for the test identified in Section 5.3. 

Selection Scheme 
Random Number        Experiment 1                                  Experiment 1 

(LLGA)                                              (pLLGA) 
0.014150 Execution 1 Execution 1 

"0928304 

lliBMllllillB||llllWi!illllMlll^ii^MlllllMlll|l^plls|Si(llllll^llli|| 

Execution 7 Execution 7 

Table 46: Example ANOVA Table 

For hypothesis testing, the model errors are assumed to be independent 

normally distributed random variables with mean of zero and variance of a2. The basic 

two-way ANOVA test follows the mathematical model [76]: 

/ = 1,2. 

where, u.y.., the overall mean effect, z- is the effect of the ith level of the first factor A, 

ß/i- is the effect of the jth level of the second factor B. 

(r ß\, is the interaction between r, and ß-, and 

Ef jjk is the random error component. 

Equation 44: Two-Way ANOVA Design 

Usually, ANOVA analysis is presented in a table similar to Table 47, which 

shows the general decomposition of a two-way ANOVA analysis. 

Source(s) of    Sum of Squares    Degrees of Freedom     Mean Square 
(SS) (DoF) (MS) 

ISSA a-1 SS/DoF MSA / MSP 

SS, b-1 SS/DoF MSB / MSc 
SSAB (a-1)(b-D SS/DoF MSAB / MS? 
SSE ab(n-1) SS/DoF 

[SST abn -1 

Table 47: Two-Way ANOVA Decomposition Table 

The terms of the table are computed in the following manner [77]: 

187 



b     n 

SSA =bn%$i..-Y..y whereYi. 
(=1 

a      b      n    /      \ 

XElGv) 

Y^y„ Ijk 
j=l 4=1 

bn 

_ ,=i i=i k=\ 

abn 

where, 

a     b 

SSa=nJ^{rt.-Yl..-Y.r+Y..y whereY,,- 
Ir. ijk 
k=\ 

(=1   7=1 

a      n 

b    /— —    M — 2j2j    >fi 
SSB = an£ \Y.r - Y...J where Y.y = -^^ 

;=] 
an 

and 

SSE=nf^^m-Y^ 

Finally, 

OOj — Jü * ~r btJ ß T" uu£ß ~T uu£ 

J.2 Kruskal-Wallis H Test 
The Kruskal-Wallis test is used in place of the ANOVA test when the treatments 

cannot be assumed normally distributed. This is the case when a GA uses a small 

treatment populations, and therefore, the central limit theorem does not apply. This test 

is used to validate ANOVA results because of the small treatment populations. 

The Kruskal-Wallis test uses a ranking method [74]. Let ni be the number of 

observations in the ith sample, k samples are grouped together and ranked from 

smallest to largest, substituting the appropriate rank for 1 to n-, observations. 

(Observations with the same values are given the average of their ranks.) The sum of 

the ranks for each sample is then computed: 

where. R is the sum of" the ranks from the i'jl sample 

Equation 45: Kruskal-Wallis H Test 

188 



If each sample consists of at least five (5) observations, then H can be 

approximated by a chi-square distribution with k -1 degrees of freedom [74]. If five 

observations can not be made, then the exact distribution of H can be found and critical 

values derived. If H < %2, then we can accept the null hypothesis. On the other hand, 

when H > %2we reject the null hypothesis. 

J.3 The Central Limit Theorem 

The underlying principle which allows the application of ANOVA testing is the 

Central Limit Theorem [Theorem 1]. We can apply this theorem when enough samples 

are drawn from the populations. As a rule of thumb, the Central Limit Theorem can be 

applied to an experiment where at least 30 samples are used. The central limit theorem 

provides the basis for the explanation of the observed phenomenon that many random 

variables tend to be normally distributed. 

Central Limit Theorem: Let X1, X2,... be independent, identically distributed random variables, 

each having mean and standard deviation   > 0. Let Sn - X1 +... + Xn. then for each x < y, 

n/i 

Where <I> is standard normal distribution function. 

lim  P 
n->°° 

x^-0—=-£' O(y)-  4>(x), 

Theorem 1: Central Limit Theorem 

189 



Appendix K. Material for Test Platforms 

K.1 AFIT Network Of Workstations (NOW) 

The AFIT NOW consists of six (6) Sun workstations connected via a high-speed 

Myrinet switch78 and a 10 Mbit ethernet hub [82]. The AFIT NOW has been in existence 

in its current configuration since October 1996. 

The workstations comprising the NOW are Sun Ultra Sparc Models 170 and 200. 

The heart of the Ultra is a 170 or 200 MHz, four-way superscalar Sparc version 9 

processor. There are two integer arithmetic logic units (ALUs) and 2 floating point (FP) 

ALUs. The FP ALUs are pipelined with an FP add or multiply taking only 3 cycles. 

There is a 32 Kilobyte (KB), on-die, Level 1 cache comprised of a 16 KB direct- 

mapped data cache and a 16 KB 2-way set associative instruction cache. Off-die there 

is a 512 KB Level 2 cache. Each Ulta has 128 MB of RAM and two 1 GB local hard 

drives. The I/O bus operates at 25 MHz and has a 64 Bit wide data path. 

K.2 IBMSP2 

The IBM SP2 is an MPP with a multistage Omega network. Each group of eight 

(8) nodes are connected via a switch board, called a frame, that is comprised of four 4x4 

omega switches. Multiple frames are interconnected to scale the network with 

intermediate switching hardware. 

The IBM SP2, located at the Aeronautical System Center's (ASC) Major Share 

Resource Center (MSRC) at Wright-Patterson AFB, has 25679 nodes [83]. Each node is 

a 135 MHz RS/6000 Power2 SC (P2SC) processor with 1 GB of RAM. The P2SC is a 

four-issue superscalar processor that can perform two simultaneous integer and FP 

instructions. 

Each processor has a 128 KB 4-way set associative data cache and a 32 KB 

instruction cache. The network interface card (NIC) on each node has a Power PC 601 

processor and performs DMA only to and from the host processor. The DMA 

performance varies with a maximum transfer rate of 160 MB/sec on the 64 bit 20 MHz 

micro-channel bus. The network has a peak theoretical bandwidth of 300 MB/sec in full- 

duplex mode. 

78 The Myrinet is capable of either 1.28 Gbit or 2.56 Gbit full-duplex communications. 
79 Only 233 nodes are available for processing. 

190 



K.3 AFIT Heterogeneous Beowulf 

The AFIT ABC Beowulf consists of one DELL 450 MHz Pentimum80 II processor, 

six DELL 400 MHz Pentimum II processors, and four Gateway 333 MHz Pentimum II 

processors connected via a 100 Mb/sec full duplex switched Fast Ethernet. Each 

processor can be booted with either Windows NT 4.0 or Linux 2.0.33. The two 

operating systems mounted on separate hard drives. Parallel communication is handled 

through MPI/PRO 1.2.3 or Patent MPI 4.0 for Windows NT and MPICH version 1.1 for 

Linux applications. 

Three of the four Gateways have 128 Mb 15 nsec SDRAM, and each of the 

DELL processors has 128 MB of 10 nsec81 SDRAM. The fourth Gateway has 256 Mb 

15 nsec SDRAM. The Pentimum II processor Level 1 cache consists of a 4-way set 

associative 16 KB instruction cache and 16 KB nonlocking 2-way set associative dual 

ported data cache. The Level 2 cache is 512 KB nonblocking, squashing, unified 4-way 

set associative physically addressed L2 cache capable of handling four outstanding 

misses and has a twelve entry load queue. The L2 cache is clocked at half the speed of 

the processor. 

Under the NT configuration, each Gateway processor has one 8 GB EIDE hard 

drive at its disposal; the DELL computers each have one 8.4 GB SCSI hard drive. 

When the system is Linux, each processor (Gateway or DELL) has one 5.6 GB EIDE 

hard drive available, except one that has an 540 MB EIDE hard drive. 

Finally, the I/O bus on the Gateways operates at 66 MHz whereas the DELL's 

I/O bus is clocked at 100 MHz. 

80 Pentimum II is a registered trademark of the Intel Corporation. 
81 nsec = nanoseconds or 10"9 seconds 

191 



8.0 Vita 

Captain Karl R. Deerman enlisted in the Untied States Air Force in June 1989. 

He attended the USAF Preparatory School. Upon graduation, he attended the USAF 

Academy where he earned his bachelor's degree in computer science and received his 

commission in June 1994. He was assign the Air Force Operational Test and 

Evaluation Center (AFOTEC), New Mexico, where he was responsible for the test and 

evaluation of the software for the B-2, the Unmanned Aerial Vehicle (UAV), the Joint 

Computer-based Acquisitions and Logistic System. Captain Deerman left the AFOTEC 

in 1998 to attend AFIT. He was subsequently assigned to Air Force Research 

Laboratory where he will apply hie education to similar research projects. 

192 



9.0 References 

[1] Goldberg, David E.; Korb, Bradley; Deb, Kalyanmoy; "Messy Genetic Algorithms: 
Motivation, Analysis, and First Results" Complex Systems Publications, 1989. 

[2] Goldberg, David E.; Korb, Bradley; Deb, Kalyanmoy; "An Investigation of Messy 
Genetic Algorithms" The Clearing House for Genetic Algorithms, University of Alabama. 
May 1990. 

[3] Lamont, Gary, et al., "AFIT Compendium of Genetic Algorithms" 

[4] Corno, F.; Reorda, Sonza; and Squillero, G.; "A New Evolutionary Algorithm 
Inspired by the Selfish Gene Theory" Politecnico di Torino, Dipartmento di Automatica e 
Informatica, Torino, Italy 

[5] Corno, F.; Reorda, Sonza; and Squillero, G.; "The Selfish Gene Algorithm: a new 
Evolutionary Optimization Strategy" Politecnico di Torino, Dipartmento di Automatica e 
Informatica, Torino, Italy. 

[6] Whitley, Darrell; "A Genetic Algorithm Tutorial" Computer Science Department, 
Colorado State University. 

[7] Harik, Georges R.; Goldberg, David E.; "Learning Linkage" Department of General 
Engineering, University of Illinois at Urbana-Champaign. August 1996. 

[8] Goldberg, David E.; Harik, Georges R.; Lobo, Fernando; Deb, Kalyanmoy; and 
Wang, Liwei; "Compressed Introns in a Linkage Learning Genetic Algorithm" 
Department of General Engineering, University of Illinois at Urbana-Champaign; 
December, 1997. 

[9] Kargupta, Hillol; "SEARCH, Evolution, and The Gene Expression Messy Genetic 
Algorithm," Computional Science Methods Division, Los Alamos National Laboratory, 
Los Alamos, NM. 

[10] Kargupta, Hillol; Bandyopadhyay, Sanghamitra; Wang, Gang; "Revisiting the 
GEMGA: Scalable Evolutionary Optimization Through Linkage Learning," Department 
of Computer Science Washington State University at Pullman. 

[11] Kargupta, Hillol; "The Gene Expression Messy Genetic Algorithm." Published in the 
Proceedings of the IEEE International Conference on Evolutionary Computation, 
Nagoya, Japan, 1996. 

[12] Harik, Georges; Lobo, Fernando; Goldberg, David; "The Compact Genetic 
Algorithm" Department of General Engineering, University of Illinois at Urbana- 
Champaign. 1997. 

[13] Beasley, David; Bull, David; Martin, Ralph; "An Overview of Genetic Algorithms: 
Part 1, Fundamentals" Inter-University Committee on Computing, 1993. 

193 



[14] Merkle, Laurence, Generalization and Parallelization of Messy Genetic Algorithms 
and Communication in Parallel Genetic Algorithms. MS Thesis, AFIT/GCE/ENG/92-D, 
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, 
OH, December 1992. 

[15] Gates, George Jr., Predicting Protein Structure Using Parallel Genetic Algorithms. 
MS Thesis, AFIT/GCS/ENG/95-D, School of Engineering, Air Force Institute of 
Technology (AETC), Wright-Patterson AFB, OH, December 1994. 

[16] Back, Thomas, Evolutionary Algorithms in Theory and Practice: Evolutionary 
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press 
Inc., New York, 1996. 

[17] Harik, Georges R., "Learning Gene Linkage to Efficiently Solve Problems of 
Bounded Difficulty Using Genetic Algorithms" Phd. Dissertation, The University of 
Michigan, Ann Arbor, Ml, 1997. 

[18] Brinkman, Donald J., Genetic Algorithms and Their Application to the Protein 
Folding Problem. MS Thesis, AFIT/GCS/ENG/93-D, School of Engineering, Air Force 
Institute of Technology (AETC), Wright-Patterson AFB, OH, December 1993. 

[19] Sober, Herbert A., CRC Handbook of Biochemistry. The Chemical Rubber Co. 
Cleveland, OH, 1968. 

[20] Schnieder, Michael, "PSC Simulation Tracks Folding Proteins", HPCwire, 28 Aug 
98, URL: hpcwire@tgc.com. 

[21] "Stereochemistry of Polypeptide Chain Configurations", Journal of Molecular 
Biology, vol. 7, 1963, pg. 95 - 99. 

[22] Stryer, Lubert, Biochemistry: Fourth Edition. W. H. Freeman and Company, New 
York, NY, 1995. 

[23] "An Introduction to Magnetic Resonance" URL: www.theochem.uni- 
duisburg.de/PC/NMR/Theory/nmr bloc.doc. 

[24] "Nuclear Magnetic Resonance Spectrometer" URL: www.brevard.cc.fl.us/BTR- 
Labs/facils/instrums/nmr. htm. 

[25] "Nuclear Magnetic Resonance" URL: 
www .mmi .or g/mmi/standard/anser/nmr. html. 

[26] Picture from URL: www.ems.uwplatt.edu/sci/chem/fac/sundin/363- 
7/image/nmr~c001. gif. 

[27] "X-ray Crystallography" URL: www.iumsc.indiana.edu/xray.htm. 

[28] "Pardue: Behind the Science, X-ray Crystallography." URL: 
www.pardue.edu/UNS/html4ever/9804/crvstallography.html. 

194 



[29] URL: http://www-wilson.ucsd.edu/education/xraydiff/59.10B.ipeg. 

[30] Computational Engines Synopsis. URL: cmm.info.nih.gov/modeling/gateway.html. 

[31] Molecular Mechanics Background: URL: 
cmm.info.nih.gov/modeling/guide documents/molecular mechanics document.html. 

[32] Introduction to Hartree-Fock Calculations. URL: 
www. fys.ruu.nl/~west/Verslag/node5. html. 

[33] Quantum Chemistry. URL: 
cmm.info.nih.gov/modeling/guide documents/quantum mechanics document.html. 

[34] Schrodinger's Eguation Outline. URL: 
cobra, ami. arizona. edu/tutorials/schrodinger/4.html. 

[35] Schrodinger's Eguation: Constantly Changing Potentials. URL: 
iluvatar.ncssm.edu/pages/pysics/modern/schrodinger.html 

[36] Kumar, Vipin; Grama, Ananth; Gupta, Anshul; Karypis, George; Introduction to 
Parallel Computing: Design and Analysis of Algorithms. The Benjamin/Cummings 
Publishing Company, Redwood City, CA, 1994. 

[37] Kaiser, Charles Jr., Refined Genetic Algorithms for Polypeptide Structure 
Prediction. AFIT/GCS/ENG/96D-13, School of Engineering, Air Force Institute of 
Technology (AETC), Wright-Patterson AFB, OH, December 1996. 

[38] "Coupled CHARMM." URL: www.psc.edu/science/proiects.html, 

[39] Droddy, Vincent; Sawyer, George; Lamont, Gary; "Introduction To Formal Parallel 
Design Using UNITY" AFIT Compendium, 1993. 

[40] Chandv: Misra; Parallel Program Design. Addison Welsey, 1988. 

[41] "Comparison of Force Fields," 
cmm.info.nih.gov/modeling/guide documents/molecular mechanics document.html. 

[42] Brooks, Bernard; Bruccoleri, Robert, Olafson, Barry; States, David; Swaminathan 
S., Karplus, Martin. "CHARMM A Program for Macromolecular Energy, Minimization, 
and Dynamics Calculations" Journal of Computational Chemistry, Vol 4, No 2, John 
Wiley and Sons, INC. 1983, pg. 187-217. 

[43] Shirazi, Behrooz; Hurson, Ali R.; "Parallelism Management: Scheduling and Load 
Balancing" AFIT CSCE790 class notes Summer 1998. 

[44] Toran, Jacobo, "Chapter 9: P-Completeness". 

[45] Kargupta, Hillol; Goldberg, David; Wang, Liwei; "Extending the Class of Order-k 
Delineable Problems for the Gene Expression Messy Genetic Algorithm." To be 

195 



published in the proceedings of the Genetic Programming Conference, AAAI Press, 
Stanford, 1997. 

[46] Table supplied by Capt Van Veldhuizen. 

[47] Committee on Physical, Mathematical, and Engineering Sciences. "Grand 
Challenges 1993: High Performance Computing and Communications." Office of 
Science and technology Policy, 1992. 

[48] Crescenzi; Goldman; Papadimitriou; Piccoloboni; Yannakakis; "On the Complexity 
of Protein Folding" 

[50] Neumaier, Arnold; "Molecular Modeling of Proteins and Mathematical Prediction of 
Protein Structure" Society for Industrial and Applied Mathematics Review, volume 39, 
number 3, Sep 97. 

[51] Kloeppel, James; "Fast Measurement Technique Reveals Early Steps in Protein 
Folding" News from the University of Illinois at Urbana-Champaign, Dec 96. 

[52] Kaiser, Charles; Lamont, Gary; Merkle, Laurence; Gates, George; Pachter, Ruth; 
"Polypeptide Structure Prediction: Real-Value Versus Binary Hybrid Genetic Algorithms" 
ACM Symposium on Applied Computing, Feb 1997. 

[54] Yao, Xin; Lui, Yong; "Fast Evolutionary Strategies" University of New South Wales, 
Australia. 

[55] Chellapilla, Kumar; "Evolutionary Programming Tutorial" Genetic Programming 
Conference 1998. 

[56] Koza, John; "Introductory Tutorial on Genetic Programming" International 
Conference on Genetic Algorithms 1995. 

[60] Nielson, Gregory; Hagen, Hans; Muller, Heinrich; Scientific Visualization 
Overviews, Methodologies, and Techniques. IEEE Computer Society; Los Alamitos, 
CA. 1997. 

[61] Ramachandran; Ramakrishnan, and Sasisekharan "Stereochemistry of 
Polypeptide Chain Configurations." Journal of Molecule Biology, Volume 7, pgs 95 - 99, 
1963. 

[62] Bindewald, Eckart; Hesser, Jürgen; Manner, Reinhard; "Implementing genetic 
Algorithms with Sterical Constraints for Protein Structure Prediction" University of 
Mannheim, Mannheim Germany, 1997 

[63] Creighton, Thomas E.; Proteins: Structures and Molecular Properties. Edition 2, 
W. H. Freeman and Company, New York, NY, 1993. 

[64] Brooks, Charles; Gruebele, Martin; Onuchic, Jose; Wolynes, Peter; "Chemical 
Physics of Protein Folding" Proceeding National Academy of Science. Vol 95, pp 
11037-11038, Sep 1998. 

196 



[65] Darnell, James; The Processing of RNA" Scientific America, volume 253, pp. 90 - 
97, Oct1985. 

[66] Dymek, Andrew; Examination of Hypercube Implementations of Genetic 
Algorithms. AFIT/GCS/ENG/92M-02, School of Engineering, Air Force Institute of 
Technology (AETC), Wright-Patterson AFB, OH, March 1992. 

[67] Oparin, Alxeander; hkusuc.hku.hk/physics/public html/seti/15origin.html. 

[70] Page-Jones, Meilir; The Practical Guide to Structured Systems Design. Yourdon 
Press; Englewood Cliffs, New Jersey; 1988. 

[71] Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy, Fredrick; Lorensen, 
William; Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, New 
Jersey, 1991. 

[72] Pacheco, Peter; Parallel Programming with MPI. Morgan Kaufmann Publishers, 
San Francisco, CA, 1997. 

[73] Gaulke, Robert; The Application of Hybridized Genetic Algorithms to the Protein 
Folding Problem. AFIT/GCS/ENG/95D-03, School of Engineering, Air Force Institute of 
Technology (AETC), Wright-Patterson AFB, OH, December 1995. 

[74] Arnold, Allen; Probability, Statistics, and Queuing Theory with Computer Science 
Applications. 2nd Edition. Academic Press, Inc. Boston, Mass. 1990. 

[75] Barr, Richard; Golden, Bruce; Kelly, James; Resende, Mauricio; Stewart, William 
Jr.; "Designing and Reporting on Computational Experiments with Heuristic Methods" 
Journal of Heuristics. Kluwer Academic Publishers, 1995. 

[76] Bradley, Ralph; Kendall, David; Wiley Series in Probability and Mathematical 
Statistics. John Wiley & Sons, Inc., New York, NY, 1978. 

[77] Fogiel, Max; REA's Problem Solvers Statistics: A complete Solution Guide to Any 
Textbook. Research and Education Association. New Jersey, 1998. 

[78] Gindhart, David, A Comparative Analysis of Networks of Workstations and 
Massively Parallel Processors for Signal Processing. AFIT/GCE/ENG/97D-01, School 
of Engineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB, OH, 
December 1997. 

[79] Schulze-Kremer, Steffen, BioComputing Hypertext CourseBook: Chapter 5. 
www. techfak. uni-bielefeld. de/bcd/Curric/ProtEn/protein. html 

[80] Piccolboni, A.; Mauri, G.; "Distance Space Evolutionary Algorithms for Protein 
Folding Predictions" IEEE 1998. 

[81] Samudrala, Ram; Moult, John; "A Graph-theoretic Algorithm for COomparative 
Modeling of Protein Structure" BIOINFORMATICS<-> STRUCTURE, 17-21 Nov 1996 

197 



[82] Gindhart, David; A Comparative Analysis of Networks of Workstations and 
Massively Parallel Processors for Signal Processing. AFIT/GCE/ENG/97D-01, School 
of Engineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB, OH, 
December 1997. 

[83] "IBM SP User's Guide" Aeronautical Systems Center Major Share Resource 
Center, Wright-Patterson AFB, OH. www.asc.hpc.mil. 

[84] Thakur, Rajeev; Gropp, William; Lusk, Ewing; "A Case for Using MPI's Derived 
Datatypes to Improve I/O Performance" Super Computing 1998. 

[85] Box, George; Hunter, William; Hunter, Stuart; Statistics for Experimenters: An 
Introduction to Design, Data Analysis, and Model Building. John Wiley and Sons, New 
York, NY, 1978. 

[86] Tavares, Rui; Teotil, Antonio; Silva, Paulo; Rosa, Agostinho; "Infected Genes 
Evolutionary Algorithm" SAC 99, San Antonio.TX. 

198 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 

23 March 1999 

3.  REPORT TYPE AND DATES COVERED 

Master's Thesis 
4.  TITLE AND SUBTITLE 

PROTEIN STRUCTURE PREDICTION USING PARALLEL LINKAGE 
INVESTIGATING GENETIC ALGORITHMS 

6.  AUTHOR(S) 

Karl R. Deerman, Captain, USAF 

5.   FUNDING NUMBERS 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Institute of Technology 
2950 P Street, Bldg 640 
WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GCS/ENG/99M-03 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Dr. Ruth Pachter 
AFRL/MLPJ 
2941 P Street, Bldg 651 
Wright-Patterson AFB, OH 45433-7702 
COMM:  (937^ 255-6671x3158DSN: 785-6671 x3158 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

Dr. Larry B. Lamont 
COMM: (937) 255-3636 x4718 DSN: 785-3636 x4718 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
This is an engineering investigation into the effectiveness and efficiency of the Linkage Learning GA (LLGA) applied to the 
PSP problem. The LLGA implementations takes explicit advantage of "tight linkages" early enough in its algorithmic 
processing to overcome the disruptive effects of crossover. The LLGA is integrated with the previously developed and tested 
AFIT CHARMm energy model software. 
Furthermore, a parallel version, pLLGA, is developed using a data partitioning scheme to "farm out" the CHARMm 
evaluations. Portability across AFIT's heterogeneous ABC Beowulf system, distributed networks, and massively parallel 
platforms is accomplished through the use of object-oriented C++ and the Message Passing Interface (MPI). This model 
improves the efficiency of the LLGA algorithm. 
Ramachandran developed constraints are incorporated into the LLGA to exploit domain knowledge in order to improve the 
effectiveness of the search technique. This approach, constrained-LLGA (cLLGA), has been parallelized using the same 
decomposition as the pLLGA. This new implementation is called the constrained-parallel LLGA (cpLLGA). Efficiency 
analysis for these two implementations is discussed. 
Finally, the results from these experiments are compared to previous AFIT implementations. The parallel fast messy GA and 
the parallel real-valued GA are compared to the pLLGA and cpLLGA, respectively. 

14. SUBJECT TERMS 
GENETIC ALGORITHMS, PROTEIN STRUCTURE PREDICTION, PARALLEL, 
LINKAGE LEARNING, MPI, CHARMM, RAMACHANDRAN CONSTRAINTS, 
VISUALIZATION, BEOWULF  

15. NUMBER OF PAGES 

213 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 


